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The analysis of two-way frequency tables concerns the association between two vari-
ables. A variety of specialized graphical displays help us to visualize the pattern of as-
sociation, using area of some region to represent the frequency in a cell. Some of these
methods are focused on visualizing an odds ratio (for 2 x 2 tables), or the general pattern
of association, or the agreement between row and column categories in square tables.

4.1 Introduction

Tables are like cobwebs, like the sieve of Danaides; beautifully reticulated, orderly to
look upon, but which will hold no conclusion. Tables are abstractions, and the object a
most concrete one, so difficult to read the essence of.

From Chartism by Thomas Carlyle (1840), Chapter II, Statistics

Most methods of statistical analysis are concerned with understanding relationships or depen-
dence among variables. With categorical variables, these relationships are often studied from data
that has been summarized by a contingency table in table form or frequency form, giving the fre-
quencies of observations cross-classified by two or more such variables. As Thomas Carlyle said, it
is often difficult to appreciate the message conveyed in numerical tables.

This chapter is concerned with simple graphical methods for understanding the association be-
tween two categorical variables. Some examples are also presented that involve a third, stratifying
variable, where we wish to determine if the relationship between two primary variables is the same
or different for all levels of the stratifying variable. More general methods for fitting models and
displaying associations for three-way and larger tables are described in Chapter 5.
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In Section 4.2, we describe briefly some numerical and statistical methods for testing whether
an association exists between two variables, and measures for quantifying the strength of this asso-
ciation. In Section 4.3 we extend these ideas to situations where the relation between two variables
is of primary interest, but there are one or more background variables to be controlled.

The main emphasis, however, is on graphical methods that help to describe the pattern of an
association between variables. Section 4.4 presents the fourfold display, designed to portray the
odds ratio in 2 x 2 tables or a set of k& such tables. Sieve diagrams (Section 4.5) and association
plots (Section 4.6) are more general methods for depicting the pattern of associations in any two-
way table. When the row and column variables represent the classifications of different raters,
specialized measures and visual displays for inter-rater agreement (Section 4.7) are particularly
useful. Another specialized display, a trilinear plot or ternary plot, described in Section 4.8, is
designed for three-column frequency tables or compositional data. In order to make clear some of
the distinctions that occur in contingency table analysis, we begin with several examples.

EXAMPLE 4.1: Berkeley admissions

Table 4.1 shows aggregate data on applicants to graduate school at Berkeley for the six largest
departments in 1973 classified by admission and gender (Bickel et al., 1975). See UCBAdmissions
(in package datasets ) for the complete data set. For such data we might wish to study whether
there is an association between admission and gender. Are male (or female) applicants more likely
to be admitted? The presence of an association might be considered as evidence of sex bias in
admission practices.

Table 4.1 is an example of the simplest kind of contingency table, a 2 x 2 classification of indi-
viduals according to two dichotomous (binary) variables. For such a table, the question of whether
there is an association between admission and gender is equivalent to asking if the proportions of
males and females who are admitted to graduate school are different, or whether the difference in
proportions admitted is not zero. A

Table 4.1: Admissions to Berkeley graduate programs

Gender | Admitted Rejected | Total % Admit
Males 1198 1493 | 2691 44.52
Females 557 1278 | 1835 30.35
Total 1755 2771 | 4526 38.78

Although the methods for quantifying association in larger tables can be used for 2 x 2 tables,
there are specialized measures (described in Section 4.2) and graphical methods for these simpler
tables.

As we mentioned in Section 1.2.4 it is often useful to make a distinction between response, or
outcome variables, on the one hand, and possible explanatory or predictor variables on the other.
In Table 4.1, it is natural to consider admission as the outcome, and gender as the explanatory
variable. In other tables, no variable may be clearly identified as the outcome, or there may be
several response variables, giving a multivariate problem.

EXAMPLE 4.2: Hair color and eye color
Table 4.2 shows data collected by Snee (1974) on the relation between hair color and eye color
among 592 students in a statistics course (a two-way margin of HairEyeColor).
Neither hair color nor eye color is considered a response in relation to the other; our interest
concerns whether an association exists between them. Hair color and eye color have both been
classified into four categories. Although the categories used are among the most common, they are
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{tabshairdat)  Table 4.2: Hair-color eye-color data

Eye Hair Color

Color | Black Brown Red Blond | Total
Brown 68 119 26 7 220
Blue 20 84 17 94 | 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 71 127 | 592

not the only categories possible.I A common, albeit deficient, representation of such a table is a
grouped barchart, as shown in the left of Figure 4.1:

> hec <- margin.table (HairEyeColor, 2:1)

> barplot (hec, beside = TRUE, legend = TRUE)
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Figure 4.1: Two basic displays for the Hair-color Eye-color data. Left: grouped barchart; right: tile
plot. {fig:bartile}

For each hair color, a group of bars represent the corresponding eye colors, the heights being pro-
portional to the absolute frequencies. Bar graphs do not extend well to more than one dimension
since

* the graphical representation does not match the tabular data structure, complicating comparisons
with the raw data;

* it is harder to compare bars accross groups than within groups;

* by construction, the grouping suggests a conditional or causal relationship of the variables (here:
“what is the eye color given the hair color?,” “how does eye color influence hair color?”), even
though such an interpretation may be inappropriate (as in this example);

UIf students had been asked to write down their hair and eye colors, it is likely that many more than four categories of
each would appear in a sample of nearly 600.
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Table 4.3: Mental impairment and parents’ SES

Mental impairment
SES | Well Mild Moderate Impaired
1 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6 21 71 54 71

e labeling may become increasingly complex.

A somewhat better approach is a tile plot (using tile () in vcd (Meyer et al., 2015)), as shown
next to the bar plot in Figure 4.1:

> tile (hec)

The table frequencies are represented by the area of rectangles arranged in the same tabular form as
the raw data, facilitating comparisons between tiles accross both variables (by rows or by columns),
by maintaining a one-to-one relationship to the underlying table?.

Everyday observation suggests that there probably is an association between hair color and eye
color, and we will describe tests and measures of associations for larger tables in Section 4.2.3. If,
as is suspected, hair color and eye color are associated, we would like to understand how they are
associated. The graphical methods described later in this chapter and in Chapter 5 help reveal the
pattern of associations present. A

EXAMPLE 4.3: Mental impairment and parents’ SES

Srole et al. (1978, p. 289) gave the data in Table 4.3 on the mental health status of a sample of
1660 young New York residents in midtown Manhattan classified by their parents’ socioeconomic
status (SES); see Mental in the vedExtra (Friendly, 2015) package. These data have also been an-
alyzed by many authors, including Agresti (2013, Section 10.5.3), Goodman (1979), and Haberman
(1979, p. 375).

There are six categories of SES (from 1 = “High” to 6 = “Low”), and mental health is classified
in the four categories “well,” “mild symptom formation,” “moderate symptom formation,” and “im-
paired.” It may be useful here to consider SES as explanatory and ask whether and how it predicts
mental health status as a response, that is, whether there is an association, and if so, investigate its
nature.

> data("Mental", package = "vcdExtra")
> mental <- xtabs(Freq ~ ses + mental, data = Mental)
> spineplot (mental)

Figure 4.2 shows a spineplot of this data—basically a stacked barchart of the row percentages
of mental impairment for each SES category, the width of each bar being proportional to the overall
SES percentages.® From this graph, it is apparant that the “well” mental state decreases with social-
economic status, while the “impaired” state increases. This pattern is more specific than overall
association (as suspected for the hair-color eye-color data), and indeed, more powerful and focused
tests are available when we treat these variables as ordinal, as we will see in Section 4.2.4. A

2This kind of display is more generally known as a fluctuation diagram (Hofmann, 2000), flexibly implemented by
function fluctile () in the package extracat (Pilhoefer, 2014).

3Thus, in the more technical terms introduced in 4.2.1, this spineplot shows the conditional distribution of impairment,
given the categories of SES.
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Figure 4.2: Spineplot of the Mental data.

EXAMPLE 4.4: Arthritis treatment

The data in Table 4.4 compares an active treatment for rheumatoid arthritis to a placebo (Koch
and Edwards, 1988), used in examples in Chapter 2 (Example 2.2). The outcome reflects whether
individuals showed no improvement, some improvement, or marked improvement. Here, the out-
come variable is an ordinal one, and it is probably important to determine if the relation between
treatment and outcome is the same for males and females. The data set is given in case form in
Arthritis (in package vcd).

This is, of course, a three-way table, with factors Treatment, Sex, and Improvement.
If the relation between treatment and outcome is the same for both genders, an analysis of the
Treatment by Improvement table (collapsed over sex) could be carried out. Otherwise we could
perform separate analyses for men and women, or treat the combinations of treatment and sex as
four levels of a “population” variable, giving a 4 x 3 two-way table. These simplified approaches
each ignore certain information available in an analysis of the full three-way table. A

4.2 Tests of association for two-way tables

4.2.1 Notation and terminology

To establish notation, let N = {n;;} be the observed frequency table of variables A and B with
r rows and ¢ columns, as shown in Table 4.5. In what follows, a subscript is replaced by a “+”
when summed over the corresponding variable, so n;y = > ; Mij gives the total frequency in row

{sec:twoway-tests }

{sec:twoway-notation}
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Table 4.4: Arthritis treatment data

Improvement
Treatment Sex None Some Marked | Total
Active Female 6 5 16 27
Male 7 2 5 14
Placebo Female 19 7 32
Male 10 0 1 11
Total 42 14 28 84

i,n4j = Y_; nij gives the total frequency in column j, and nyy = 37, 37, nyj is the grand total;
for convenience, n4 4 is also symbolized by n.

Table 4.5: The R x C contingency table

Row Column category

Category | 1 2 - C Total
1 nip ni2 s nic | Ny

2 N1 M2z o Nac | Ney

R MRl NR2 - NRC | MR+
Total Ny1r Ng2 0 Ny | N4y

When each observation is randomly sampled from some population and classified on two cat-
egorical variables, A and B, we refer to the joint distribution of these variables, and let 7;; =
Pr(A = i, B = j) denote the population probability that an observation is classified in row i,
column j (or cell (¢5)) in the table. Corresponding to these population joint probabilities, the cell
proportions, p;; = n;;/n, give the sample joint distribution.

The row totals 7,1 and column totals n.; are called marginal frequencies for variables A
and B, respectively. These describe the distribution of each variable ignoring the other. For the
population probabilities, the marginal distributions are defined analogously as the row and column
totals of the joint probabilities, ;1 = > jmigand g = >, mij. The sample marginal proportions
are, correspondingly, piy = >, pij = nit/n,and pyj = 37, pij = nyj/n.

When one variable (the column variable, B, for example) is a response variable, and the other
(A) is an explanatory variable, it is most often useful to examine the distribution of the response B
for each level of A separately. These define the conditional distributions of B, given the level of
A, and are defined for the population as 7; | ; = /74 .

These definitions are illustrated for the Berkeley data (Table 4.1) below, using the function
CrossTable ().

Berkeley <- margin.table (UCBAdmissions, 2:1)

library (gmodels)

CrossTable (Berkeley, prop.chisq = FALSE, prop.c = FALSE,
format = "SPSS")

+ V VvV V

Cell Contents

{tab:arthrit}

{tab:rbyc}
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| Count |
| Row Percent |
| Total Percent |

Total Observations in Table: 4526

| Admit
Gender | Admitted | Rejected | Row Total |
————————————— |- |
Male | 1198 | 1493 | 2691 |
\ 44.519% | 55.481% | 59.456% |
| 26.469% | 32.987% | |
————————————— |- | ]
Female | 557 | 1278 | 1835 |
\ 30.354% | 69.646% | 40.544% |
| 12.307% | 28.237% | |
————————————— |- ||
Column Total | 1755 | 2771 | 4526
\ \ \

The output shows the joint frequencies, n;;, and joint sample percentages, 100 x p;;, in the
first row within each table cell. The second row in each cell (“Row percent”) gives the conditional
percentage of admission or rejection, 100 x p;|; for males and females separately. The row and
column labelled “Total” give the marginal frequencies, n; and n ;, and marginal percentages, p; 4
and p ;.

4.2.2 2 by 2 tables: Odds and odds ratios

The 2 by 2 contingency table of applicants to Berkeley graduate programs in Table 4.1 may be
regarded as an example of a cross-sectional study. The total of n = 4,526 applicants in 1973 has
been classified by both gender and admission status. Here, we would probably consider the total n to
be fixed, and the cell frequencies n;;, ¢ = 1,2; 7 = 1,2 would then represent a single multinomial
sample for the cross-classification by two binary variables, with probabilities cell p;;, i = 1,2;j =
1, 2 such that

P11+ pi2 +p21 +p22=1.

The basic null hypothesis of interest for a multinomial sample is that of independence. Are admis-
sion and gender independent of each other?

Alternatively, if we consider admission the response variable, and gender an explanatory vari-
able, we would treat the numbers of male and female applicants as fixed and consider the cell
frequencies to represent two independent binomial samples for a binary response. In this case, the
null hypothesis is described as that of homogeneity of the response proportions across the levels of
the explanatory variable.

Measures of association are used to quantify the strength of association between variables.
Among the many measures of association for contingency tables, the odds ratio is particularly
useful for 2 x 2 tables, and is a fundamental parameter in several graphical displays and models
described later. Other measures of strength of association for 2 x 2 tables are described in Stokes
et al. (2000, Chapter 2) and Agresti (1996, Section 2.2).

For a binary response, where the probability of a “success” is 7, the odds of a success is defined
as

odds = —— .
1—m
Hence, odds = 1 corresponds to m = 0.5, or success and failure equally likely. When success is

{sec:twoway-twobytwo }



{eq:logit}

{eq:soddsratio}

122 4. Two-Way Contingency Tables

more likely than failure = > 0.5, and the odds > 1; for instance, when 7 = 0.75, odds = .75/.25 =
3, so a success is three times as likely as a failure. When failure is more likely, 7 < 0.5, and the
odds < 1; for instance, when 7 = 0.25, odds = .25/.75 = %

The odds of success thus vary multiplicatively around 1. Taking logarithms gives an equivalent
measure that varies additively around 0, called the log odds or logit:

logit(7) = log(odds) = log (1 fﬂ) . (4.1)

The logit is symmetric about = = 0.5, in that logit(w) = —logit(1 — 7). The following lines
calculate the odds and log odds for a range of probabilities. As you will see in Chapter 7, the logit
transformation of a probability is fundamental in logistic regression.

> p <= (0.0, i, 25, &0, 5, &, -9B)
odds <- p / (1 - p)

logodds <- log(odds)

data.frame (p, odds, logodds)

VvV V V

o) odds logodds
0.052632 -2.9444
0.111111 -2.1972
0.333333 -1.0986
1.000000 0.0000
3.000000 1.0986
9.000000 2.1972
9 2o

.000000 9444

~N o0 WwWN
[cNeololoNoReNe]
()]
(@]

A binary response for two groups gives a 2 x 2 table, with Group as the row variable, say. Let
w1 and 7y be the success probabilities for Group 1 and Group 2. The odds ratio, 0, is just the ratio
of the odds for the two groups:

Odd51 7T1/(177T1)

dds ratio = 0 = = .
odes ratio OddSQ 7T2/(1—7T2)

Like the odds itself, the odds ratio is always non-negative, between 0 and co. When 6 = 1, the
distributions of success and failure are the same for both groups (so m; = 72); there is no association
between row and column variables, or the response is independent of group. When 6 > 1, Group 1
has a greater success probability; when € < 1, Group 2 has a greater success probability.

Similarly, the odds ratio may be transformed to a log scale, to give a measure that is symmetric
about 0. The log odds ratio, symbolized by 1, is just the difference between the logits for Groups 1
and 2:

) m /(1 —mp) . .
log odds ratio = ¢ = log(f) = log | ————= | = logit — logit .
og odds ratio = ¢ = log(f) = log |:7T2/(1 ) ogit(m1) — logit(ma)
Independence corresponds to ¢ = 0, and reversing the rows or columns of the table merely changes
the sign of .

For sample data, the sample odds ratio is the ratio of the sample odds for the two groups:

- p1/(1—p1) _ n11/N12 _ Maimen @.2)

p2/(1—p2)  mai/noe  nianot

The sample estimate 6 in Eqn. (4.2) is the maximum likelihood estimator of the true 6. The
sampling distribution of 0is asymptotically normal as n — oo, but may be highly skewed in small
to moderate samples.

Consequently, inference for the odds ratio is more conveniently carried out in terms of the
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log odds ratio, whose sampling distribution is more closely normal, with mean ¢ = log(6), and
asymptotic standard error (ASE)

ASE log(6) = §(’l[)> = — + (43)

A large-sample 100(1 — «)% confidence interval for log(6) may therefore be calculated as

IOg(a) + Zl—a)2 ASE log(0) — /(ﬁ + Zl—a)2 ‘§(1[})

where 2, _ /3 is the cumulative normal quantile with 1 —« /2 in the lower tail. Confidence intervals
for @ itself are obtained by exponentiating the end points of the interval for ¢ = log(6),*

exp (1/3 + Z1fa/2§(1/3)> .

{ex:ucbadmissions }

EXAMPLE 4.5: Berkeley admissions
As an illustratation, we apply these formulae to the UCB Admissions data, using the 1oddsratio ()
function in vcd, which by default calculates log-odds:

> data ("UCBAdmissions")

> UCB <- margin.table (UCBAdmissions, 1:2)
> (LOR <- loddsratio (UCB))

log odds ratios for Admit and Gender
[1] 0.61035

> (OR <- loddsratio (UCB, log = FALSE))
odds ratios for Admit and Gender

[1] 1.8411

The function returns an object for which the summary () method computes the ASE and carries
out the significance test (for the log odds):

> summary (LOR)

z test of coefficients:

Estimate Std. Error z value
Admitted:Rejected/Male:Female 0.6104 0.0639 9.55

Pr(>lzl)
Admitted:Rejected/Male:Female <2e-16 x*=*

Signif. codes: 0 '"x%x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " " 1

Clearly, the hypothesis of independence has to be rejected, suggesting the presence of gender bias.
confint () computes confidence intervals for (log) odds ratios:

4Note that 6 is 0 or co if any n;; = 0. Haldane (1955) and Gart and Zweiful (1967) showed that improved estimators of ¢
and ¢ = log(0) are obtained by replacing each n;; by [n;; + %} in Eqn. (4.2) and Eqn. (4.3). This adjustment is preferred in
small samples, and required if any zero cells occur. In large samples, the effect of adding 0.5 to each cell becomes negligible.
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> confint (OR)

2
Admitted:Rejected/Male:Female 1.6

N o1

o°
N ©
o

> confint (LOR)

2.5 % 97.5
Admitted:Rejected/Male:Female 0.48512 0.735
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Finally, we note that an exact test (based on the hypergeometric distribution) is provided by

fisher.test () (see the help page for the details):

> fisher.test (UCB)

Fisher's Exact Test for Count Data

data: UCB
p-value <2e-16
alternative hypothesis: true odds ratio is
95 percent confidence interval:

1.6214 2.0912
sample estimates:
odds ratio

1.8409

In general, exact tests are to be prefered over asymptotic
however, that the results are very similar in this example.

4.2.3 Larger tables: Overall analysis

not equal to 1

tests like the one described above. Note,
A

For two-way tables, overall tests of association can be carried out using assocstats (). If the

data set has more than two factors (as in the Arthriti

s data), the other factors will be ignored

(and collapsed) if not included when the table is constructed. This simplified analysis may be
misleading if the excluded factors interact with the factors used in the analysis.

EXAMPLE 4.6: Arthritis treatment

Since the main interest is in the relation between Treatment and Improved, an overall
analysis (that ignores Sex) can be carried out by creating a two-way table with xtabs () as shown

below.
> data("Arthritis", package = "vcd")
> Art <- xtabs(~ Treatment + Improved, data
> Art
Improved

Treatment None Some Marked

Placebo 29 7 7

Treated 13 7 21

> round (100 * prop.table (Art, margin = 1), 2)

Improved
Treatment None Some Marked
Placebo 67.44 16.28 16.28
Treated 31.71 17.07 51.22

= Arthritis)
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The row proportions show a clear difference in the outcome for the two groups: For those given
the placebo, 67% reported no improvement; in the treated group, 51% reported marked improve-
ment. 2 tests and measures of association are provided by assocstats () as shown below:

> assocstats (Art)

X*2 df P (> X*2)
Likelihood Ratio 13.530 2 0.0011536

Pearson 13.055 2 0.0014626
Phi-Coefficient : NA

Contingency Coeff.: 0.367

Cramer's V : 0.394

A

The measures of association are normalized variants of the y? statistic. Caution is needed for
interpretation since the maximum values depend on the table dimensions.

4.2.4 Tests for ordinal variables

For r x c tables, more sensitive tests than the test for general association (independence) are avail-
able if either or both of the row and column variables are ordinal. Generalized Cochran—Mantel-
Haenszel tests (Landis et al., 1978), which take the ordinal nature of a variable into account, are
provided by the CMHtest () in vcdExtra. These tests are based on assigning numerical scores to
the table categories; the default (table) scores treat the levels as equally spaced. They generally have
higher power when the pattern of association is determined by the order of an ordinal variable.

EXAMPLE 4.7: Mental impairment and parents’ SES
We illustrate these tests using the data on mental impairment and SES introduced in Exam-
ple 4.3, where both variables can be considered ordinal.

> data("Mental", package = "vcdExtra")
> mental <- xtabs(Freq ~ ses + mental, data = Mental)
> assocstats (mental) # standard chisg tests

X~2 df P (> X"2)
Likelihood Ratio 47.418 15 3.1554e-05

Pearson 45.985 15 5.3458e-05
Phi-Coefficient : NA

Contingency Coeff.: 0.164

Cramer's V : 0.096

> CMHtest (mental) # CMH tests

Cochran—-Mantel-Haenszel Statistics for ses by mental

AltHypothesis Chisqg Df Prob
cor Nonzero correlation 37.2 1 1.09e-09
rmeans Row mean scores differ 40.3 5 1.30e-07
cmeans Col mean scores differ 40.7 3 7.70e-09
general General association 46.0 15 5.40e-05

In this data set, all four tests show a highly significant association. However, the cor test
for nonzero correlation uses only one degree of freedom, whereas the test of general association
requires 15 df. AN

{sec:ordinaltests }

{ex:mental2}
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The four tests differ in the types of departure from independence they are sensitive to:

General Association When the row and column variables are both nominal (unordered), the only
alternative hypothesis of interest is that there is some association between the row and column
variables. The CMH test statistic is similar to the (Pearson) Chi-Square and Likelihood Ratio
Chi-Square in the result from assocstats (); all have (r — 1)(c — 1) df.

Row Mean Scores Differ If the column variable is ordinal, assigning scores to the column variable
produces a mean for each row. The association between row and column variables can be
expressed as a test of whether these means differ over the rows of the table, with » — 1 df. This
is analogous to the Kruskal-Wallis non-parametric test (ANOVA based on rank scores).

Column Mean Scores Differ Same as the above, assigning scores to the row variable.

Nonzero Correlation (Linear association) When both row and column variables are ordinal, we
could assign scores to both variables and compute the correlation (r), giving Spearman’s rank
correlation coefficient. The CMH x? is equal to (N — 1)72, where N is the total sample size.
The test is most sensitive to a pattern where the row mean score changes linearly over the rows.

4.2.5 Sample CMH profiles

Two contrived examples may make the differences among these tests more apparent. Visualiza-
tions of the patterns of association reinforces the aspects to which the tests are most sensitive, and
introduces the sieve diagram described more fully in Section 4.5.

4.2.5.1 General association

The table below exhibits a general association between variables A and B, but no difference in row
means or linear association. The row means for category j are calculated by assigning integer scores,
b; = 1, to the column categories, and using the corresponding frequencies of row j as weights. The
column means are obtained analogously. Figure 4.3 (left) shows the pattern of association in this
table graphically, as a sieve diagram (described in Section 4.5).

bl b2 b3 b4 b5 | Total Mean
al 0 15 25 15 O 55 3.0
a2 5 20 5 20 5 55 3.0
a3 | 20 5 5 5 20 55 3.0
Total | 25 40 35 40 25| 165 3.0
Mean | 2.8 1.6 14 16 28 2.1

This is reflected in the CMHtest () output shown below (cmhdemol contains the data shown
above).

> CMHtest (cmhdemol)

Cochran-Mantel-Haenszel Statistics

AltHypothesis Chisg Df Prob
cor Nonzero correlation 0.0 1 1.00e+00
rmeans Row mean scores differ 0.0 2 1.00e+00
cmeans Col mean scores differ 72.2 4 7.78e-15
general General association 91.8 8 2.0le-16

The chi-square values for non-zero correlation and different row mean scores are exactly zero
because the row means are all equal. Only the general association test shows that A and B are
associated.
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Figure 4.3: Sieve diagrams for two patterns of association: Left: general association; right: linear

association.

4.2.5.2 Linear association

The table below contains a weak, non-significant general association, but significant row mean
differences and linear associations. The unstructured test of general association would therefore
lead to the conclusion that no association exists, while the tests taking ordinal factors into account
would conclude otherwise. Note that the largest frequencies shift towards lower levels of B as the
level of variable A increases. See Figure 4.3 (right) for a visual representation of this pattern.

bl b2 b3 b4 b5 | Total Mean

al 2 8 8 8 31 348

a2 2 8 8 5 31 3.19

a3 5 8 8 2 31 2381

a4 8 8 5 2 31 252

Total | 17 29 32 29 17| 124 3.00
Mean | 3.1 2.7 25 23 19 2.5

Note that the XQ—Values for the row-means and non-zero correlation tests from CMHtest () are
very similar, but the correlation test is more highly significant since it is based on just one degree of
freedom. In the following example, cmhdemo2 corresponds to the table above:

> CMHtest (cmhdemo?2)

Cochran-Mantel-Haenszel Statistics

AltHypothesis
cor Nonzero correlation
rmeans Row mean scores differ
cmeans Col mean scores differ
general General association

Chisqg Df
10.6 1
10.7 3

11.4 4

4 12

13.4 1

[eNoNeNe)

Prob
.00111
.01361
.02241
.34064

The difference in sensitivity and power among these tests for categorical data is analogous to
the difference between general ANOVA tests and tests for linear trend (contrasts) in experimental
designs with quantitative factors: The more specific test has greater power, but is sensitive to a
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narrower range of departures from the null hypothesis. The more focused tests for ordinal factors
are a better bet when we believe that the association depends on the ordered nature of the factor
levels.

4.3 Stratified analysis

An overall analysis ignores other variables (like sex), by collapsing over them. In the Arthritis
data, it is possible that the treatment is effective only for one gender, or even that the treatment has
opposite effects for men and women. If so, pooling over the ignored variable(s) can be seriously
misleading.

4.3.1 Computing strata-wise statistics

A stratified analysis controls for the effects of one or more background variables. This is similar
to the use of a blocking variable in an ANOVA design. Tests for association can be obtained by
applying a function (assocstats (), CMHtest () ) over the levels of the stratifying variables.

EXAMPLE 4.8: Arthritis treatment
The statements below request a stratified analysis of the arthritis treatment data with CMH tests,
controlling for gender. Essentially, the analysis is carried out separately for males and females.
The table Art2 is constructed as a three-way table, with Sex as the last dimension.

> Art2 <- xtabs(~ Treatment + Improved + Sex, data = Arthritis)
> Art2

, , Sex = Female

Improved
Treatment None Some Marked
Placebo 19 7 6
Treated 6 5 16

, , Sex = Male

Improved
Treatment None Some Marked
Placebo 10 0 1
Treated 7 2 5

Both assocstats () and CMHtest () are designed for stratified tables, and use all dimen-
sions after the first two as strata.

> assocstats (Art2)

$'Sex:Female’®
X~2 df P (> X"2)
Likelihood Ratio 11.731 2 0.0028362

Pearson 11.296 2 0.0035242
Phi-Coefficient : NA

Contingency Coeff.: 0.401

Cramer's V : 0.438

$*Sex:Male”

X~2 df P (> X*2)
Likelihood Ratio 5.8549 2 0.053532
Pearson 4.9067 2 0.086003
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Phi-Coefficient : NA
Contingency Coeff.: 0.405
Cramer's V : 0.443

Note that even though the strength of association (Cramer’s V) is similar in the two groups, the
x? tests show significance for females, but not for males. This is true even using the more powerful
CMH tests below, treating Treatment as ordinal. The reason is that there were more than twice
as many females as males in this sample.

> CMHtest (Art2)
$°Sex:Female”

Cochran-Mantel-Haenszel Statistics for Treatment by Improved
in stratum Sex:Female

AltHypothesis Chisg Df Prob
cor Nonzero correlation 10.9 1 0.000944
rmeans Row mean scores differ 10.9 1 0.000944
cmeans Col mean scores differ 11.1 2 0.003878
general General association 11.1 2 0.003878

$*Sex:Male’
Cochran-Mantel-Haenszel Statistics for Treatment by Improved
in stratum Sex:Male

AltHypothesis Chisg Df Prob

cor Nonzero correlation 3.71 1 0.0540
rmeans Row mean scores differ 3.71 1 0.0540
cmeans Col mean scores differ 4.71 2 0.0949
general General association 4.71 2 0.0949

> apply (Art2, 3, sum)

Female Male
59 25

4.3.2 Assessing homogeneity of association

In a stratified analysis it is often crucial to know if the association between the primary table
variables is the same over all strata. For 2 x 2 X k tables this question reduces to whether the
odds ratio is the same in all k strata. The vcd package implements Woolf’s test (Woolf, 1995) in
woolf_test () for this purpose.

For larger n-way tables, this question is equivalent to testing whether the association between
the primary variables, A and B, say, is the same for all levels of the stratifying variables, C, D, .. ..

EXAMPLE 4.9: Berkeley admissions
Here we illustrate the use of Woolf’s test for the UCBAdmi ssions data. The test is significant,
indicating that the odds ratios cannot be considered equal across departments. We will see why
when we visualize the data by department in the next section.

> woolf_ test (UCBAdmissions)
Woolf-test on Homogeneity of Odds Ratios (no 3-Way
assoc.)

data: UCBAdmissions
X-squared = 17.9, df = 5, p-value = 0.0031

{sec:twoway-homog}

{ex:berkeleyla}
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A

EXAMPLE 4.10: Arthritis treatment
For the arthritis data, homogeneity means the association between treatment and outcome
(improve) is the same for both men and women. Again, we are using woolf_test () to testif
this assumption holds.

> woolf_test (Art2)

Woolf-test on Homogeneity of Odds Ratios (no 3-Way
assoc.)

data: Art2
X-squared = 0.318, df = 1, p-value = 0.57

Even though we found in the CMH analysis above that the association between Treatment
and Improved was stronger for females than males, the analysis using woolf_test () isclearly
non-significant, so we cannot reject homogeneity of association. AN

Remark

As will be discussed later (Section 5.4) in the case of a 3-way table, the hypothesis of homogeneity
of association among three variables A, B and C can be stated as the loglinear model of no three-way
association, [AB][AC][BC]. This notation (described in Section 5.4.1 and Section 9.2) lists only the
high-order association terms in a linear model for log frequency.

This hypothesis can be stated as the loglinear model,

[SexTreatment] [SexImproved] [TreatmentImproved] . “4.4)

Such tests can be carried out most conveniently using 1oglm () in the MASS (Ripley, 2015)
package. The model formula uses the standard R notation () ~2 to specify all terms of order 2.

> library (MASS)

> loglm(~ (Treatment + Improved + Sex) "2, data = Art2)

Call:

loglm(formula = ~(Treatment + Improved + Sex)”"2, data = Art2)
Statistics:

X*2 df P (> X"2)
Likelihood Ratio 1.7037 2 0.42663
Pearson 1.1336 2 0.56735

Consistent with the Woolf test, the interaction terms are not significant.

4.4 Fourfold display for 2 x 2 tables

The fourfold display is a special case of a radial diagram (or “polar area chart”) designed for the
display of 2x 2 (or 2x 2 x k) tables (Fienberg, 1975, Friendly, 1994a,b). In this display the frequency
n;; in each cell of a fourfold table is shown by a quarter circle, whose radius is proportional to , /7;;,
so the area is proportional to the cell count. The fourfold display is similar to a pie chart in using
segments of a circle to show frequencies. It differs from a pie chart in that it keeps the angles of the
segments constant and varies the radius, whereas the pie chart varies the angles and keeps the radius
constant.
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The main purpose of this display is to depict the sample odds ratio, = (n11 /n12) < (n21/n22).
An association between the variables (0 # 1) is shown by the tendency of diagonally opposite cells
in one direction to differ in size from those in the opposite direction, and the display uses color
or shading to show this direction. Confidence rings for the observed 6 allow a visual test of the
hypothesis of independence, Hy : # = 1. They have the property that (in a standardized display) the
rings for adjacent quadrants overlap iff the observed counts are consistent with the null hypothesis.

EXAMPLE 4.11: Berkeley admissions
Figure 4.4 (left) shows the basic, unstandardized fourfold display for the Berkeley admissions
data (Table 4.1). Here, the area of each quadrant is proportional to the cell frequency, shown nu-
merically in each corner. The odds ratio is proportional to the product of the areas shaded dark,
divided by the product of the areas shaded light. The sample odds ratio, Odds(Admit|Male) /
Odds(Admit|Female) is 1.84 (see Example 4.9) indicating that males were nearly twice as likely
to be admitted.

> fourfold (Berkeley, std = "ind.max") # unstandardized
> fourfold (Berkeley, margin = 1) # equating gender
Gender: Male Gender: Male

Admit: Admitted
Admit: Rejected
Admit: Admitted
Admit: Rejected

Gender: Female Gender: Female

Figure 4.4: Fourfold displays for the Berkeley admission data. Left: unstandardized; right: equat-
ing the proportions of males and females.

However, it is difficult to make these visual comparisons because there are more men than
women, and because the proportions admitted and rejected are unequal. In the unstandardized
display the confidence bands have no interpretation as a test of Hy : 6 = 1.

The data in a 2 x 2 table can be standardized to make these visual comparisons easier. Table 4.6

Table 4.6: Admissions to Berkeley graduate programs, frequencies and row percentages.

Frequencies Row Percents
Admitted Rejected | Admitted Rejected
Males 1198 1493 44.52 55.48
Females 557 1278 30.35 69.65

{ex:berkeley2}

{fig:berk-fourfold1 }

{tab:berkrow }
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shows the Berkeley data with the addition of row percentages (which equate for the number of men
and women applicants) indicating the proportion of each gender accepted and rejected. We see
that 44.52% of males were admitted, while only 30.35% of females were admitted. Moreover, the
row percentages have the same odds ratio as the raw data: 44.52 x 69.65/30.35 x 55.48 = 1.84.
Figure 4.4 (right) shows the fourfold display where the area of each quarter circle is proportional to
these row percentages.

With this standardization, the confidence rings have the property that the confidence rings for
each upper quadrant will overlap with those for the quadrant below it if the odds ratio does not
differ from 1.0. (Details of the calculation of confidence rings are described in the next section.) No
similar statement can be made about the corresponding left and right quadrants, however, because
the overall rate of admission has not been standardized.

As a final step, we can standardize the data so that both table margins are equal, while preserving
the odds ratio. Each quarter circle is then drawn to have an area proportional to this standardized
cell frequency. This makes it easier to see the association between admission and sex without being
influenced by the overall admission rate or the differential tendency of males and females to apply.
With this standardization, the four quadrants will align (overlap) horizontally and vertically when
the odds ratio is 1, regardless of the marginal frequencies. The fully standardized display, which is
usually the most useful form, is shown in Figure 4.5.

> fourfold (Berkeley) # standardize both margins

Gender: Male

Admit: Admitted
Admit: Rejected

Gender: Female

Figure 4.5: Fourfold display for Berkeley admission data with margins for gender and admission
equated. The area of each quadrant shows the standardized frequency in each cell.

A

These displays also use color (blue) and diagonal tick marks to show the direction of positive
association. The visual interpretation (also conveyed by area) is that males are more likely to be
accepted, females more likely to be rejected.

The quadrants in Figure 4.5 do not align and the 95% confidence rings around each quadrant do
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not overlap, indicating that the odds ratio differs significantly from 1—putative evidence of gender
bias. The very narrow width of the confidence rings gives a visual indication of the precision of the
data—if we stopped here, we might feel quite confident of this conclusion.

4.41 Confidence rings for odds ratio

Confidence rings for the fourfold display are computed from a confidence interval for 6, whose
endpoints can each be mapped into a 2 x 2 table. Each such table is then drawn in the same way as
the data.

The interval for  is most easily found by considering the distribution of 1[) = log 0, whose
standard error may be estimated by Eqn. (4.3). Then an approximate 1 — « confidence interval for
1) is given by . R o

(RES §(¢) Fl—a/2 = {wla wu} )

as described in Section 4.2.2. The corresponding limits for the odds ratio 6 are {exp(¢;), exp(tpy)}.

For the data shown in Figure 4.5, v = log 0 = .6104, and 5(¢») = 0.0639, so the 95%, lim-
its for 0 are {1.624, 2.087}, as shown by the calculations below. The same result is returned by
confint () for a "loddsratio” object.

> summary (loddsratio (Berkeley))

z test of coefficients:
Estimate Std. Error z value
Male:Female/Admitted:Rejected 0.6104 0.0639 9.55
Pr(>|zl)
Male:Female/Admitted:Rejected <2e-16 #*%*x*
Signif. codes: 0 'xxx' 0.001 '"%%' 0.01 '«' 0.05 '.'" 0.1 ' " 1
> exp(.6103 + c(-1, 1) * qgnorm(.975) * 0.06398)
[1] 1.6240 2.0869
> confint (loddsratio (Berkeley, log = FALSE))

2.
Male:Female/Admitted:Rejected 1.6

N U1

44
Now consider how to find a 2 x 2 table whose frequencies correspond to the odds ratios at the

limits of the confidence interval. A table standardized to equal row and column margins can be
represented by the 2 x 2 matrix with entries

p (1-p)
(1-p) P ’

whose odds ratio is § = p?/(1 — p)2. Solving for p gives p = v//(1 + /). The corresponding
frequencies can then be found by adjusting the standardized table to have the same row and column
margins as the data. The results of these computations, which generate the confidence rings in
Figure 4.5, are shown in Table 4.7.

4.4.2 Stratified analysis for 2 x 2 x k tables

In a 2 x 2 x k table, the last dimension often corresponds to “strata” or populations, and it is
typically of interest to see if the association between the first two variables is homogeneous across

{sec:twoway-fourstrat}
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Table 4.7: Odds ratios and equivalent tables for 95% confidence rings for the Berkeley data.

Odds | Standardized Equivalent

Ratio Table Frequencies
Lower 1.624 | 0.560 0.440 | 1,167.1 587.9
limit 0.440 0.560 | 1,5239 1,247.1

Data  1.841 | 0.576 0424 | 1,198.0  557.0
0.424 0.576 | 1,493.0 1,278.0

Upper 2.087 | 0.591 0.409 | 1,228.4  526.6
limit 0.409 0.591 | 1,462.6 1,308.4

strata. For such tables, simply make one fourfold panel for each stratum. The standardization of
marginal frequencies is designed to allow easy visual comparison of the pattern of association when
the marginal frequencies vary across two or more populations.

4.4.2.1 Stratified displays

The admissions data shown in Figure 4.4 and Figure 4.5 were actually obtained from six departments—

the six largest at Berkeley (Bickel et al., 1975). To determine the source of the apparent sex bias in
favor of males, we make a new plot, Figure 4.6, stratified by department.

> # fourfold display
> UCB <- aperm(UCBAdmissions, c(2, 1, 3))
> fourfold (UCB, mfrow = c(2, 3))

Surprisingly, Figure 4.6 shows that, for five of the six departments, the odds of admission is
approximately the same for both men and women applicants. Department A appears to differs
from the others, with women approximately 2.86 (= (313/19)/(512/89)) times as likely to gain
admission. This appearance is confirmed by the confidence rings, which in Figure 4.6 are joint’
95% intervals for 0., c=1,... k.

This result, which contradicts the display for the aggregate data in Figure 4.4, is a nice example
of Simpson’s paradox.® and illustrates clearly why an overall analysis of a three- (or higher-) way
table can be misleading. The resolution of this contradiction can be found in the large differences in
admission rates among departments. Men and women apply to different departments differentially,
and in these data women happen to apply in larger numbers to departments that have a low accep-
tance rate. The aggregate results are misleading because they falsely assume men and women are
equally likely to apply in each field.”

4.4.2.2 Visualization principles for complex data

An important principle in the display of large, complex data sets is controlled comparison—we
want to make comparisons against a clear standard, with other things held constant. The fourfold

SFor multiple-strata plots, fourfold () by default adjusts the significance level for multiple testing, using Holm’s
(1979) method provided by p.adjust ().

6Simpson’s paradox (Simpson, 1951) occurs in a three-way table, [A, B, C], when the marginal association between two
variables, A, B collapsing over C, differs in direction from the partial association A, B|C' = ¢y at the separate levels of C'.
Strictly speaking, Simpson’s paradox would require that for all departments separately the odds ratio 6 < 1 (which occurs
for Departments A, B, D, and F in Figure 4.6) while in the aggregate data 6 > 1.

7This explanation ignores the possibility of structural bias against women, e.g., lack of resources allocated to departments
that attract women applicants.

{tab:berkodds}
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Dept: A Dept: C Dept: E
Gender: Male Gender: Male Gender: Male

512 313 120 205 53 138
o o o f\ o o o
2 2 2 2 L 2
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o (%) o [5) o [5)
< o < o < o
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89 19 202 391 94 299

Gender: Female Gender: Female Gender: Female
Dept: B Dept: D Dept: F
Gender: Male Gender: Male Gender: Male

353 207 138 279 22 351
2 2 2 2 2 2
= o = |8} = |8}
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2 c 2 c 2 ¢
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17 8 131 244 24 317

Gender: Female Gender: Female Gender: Female

Figure 4.6: Fourfold displays for Berkeley admissions data, stratified by department. The more
intense shading for Dept. A indicates a significant association.

display differs from a pie chart in that it holds the angles of the segments constant and varies the
radius. An important consequence is that we can quite easily compare a series of fourfold displays
for different strata, since corresponding cells of the table are always in the same position. As a
result, an array of fourfold displays serve the goals of comparison and detection better than an array
of pie charts.

Moreover, it allows the observed frequencies to be standardized by equating either the row or
column totals, while preserving the design goal for this display—the odds ratio. In Figure 4.6, for
example, the proportion of men and women, and the proportion of accepted applicants were equated
visually in each department. This provides a clear standard that also greatly facilitates controlled
comparison.

As mentioned in the introduction, another principle is visual impact—we want the important
features of the display to be easily distinguished from the less important (Tukey, 1993). Figure 4.6
distinguishes the one department for which the odds ratio differs significantly from 1 by shading
intensity, even though the same information can be found by inspection of the confidence rings.

EXAMPLE 4.12: Breathlessness and wheeze in coal miners

The various ways of standardizing a collection of 2 x 2 tables allows visualizing relations with
different factors (row percentages, column percentages, strata totals) controlled. However, different
kinds of graphs can speak more eloquently to other questions by focusing more directly on the odds
ratio.

Agresti (2002, Table 9.8) cites data from Ashford and Sowden (1970) on the association between
two pulmonary conditions, breathlessness and wheeze, in a large sample of coal miners. The miners
are classified into age groups, and the question treated by Agresti is whether the association between
these two symptoms is homogeneous over age. These data are available in the CoalMiners data
inved, a 2 x 2 x 9 frequency table. The first group, aged 20-24 has been omitted from these
analyses.

{ex:wheezel }
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> data("CoalMiners", package = "vcd")

> CM <- CoalMiners[, , 2 9
> structable(. ~ Age, data = CM)
Breathlessness B NoB
Wheeze W NoW W NoW
Age
25-29 23 9 105 1654
30-34 54 19 177 1863
35-39 121 48 257 2357
40-44 169 54 273 1778
45-49 269 88 324 1712
50-54 404 117 245 1324
55-59 406 152 225 967
60-64 372 106 132 526

The question of interest can be addressed by displaying the odds ratio in the 2 x 2 tables with
the margins of breathlessness and wheeze equated (i.e., with the default std=’"margins’ option),
which gives the graph shown in Figure 4.7. Although the panels for all age groups show an over-
whelmingly positive association between these two symptoms, one can also (by looking carefully)
see that the strength of this association declines with increasing age.

> fourfold (CM, mfcol = c(2, 4))

Age: 25-29
Breathlessness: B
23 9

Age: 30-34 Age: 35-39 Age: 40-44
Breathlessness: B B

121 48

54

Wheeze: NoW
Wheeze: W
Wheeze: NoW
Wheeze: W
Wheeze: NoW
Wheeze: W
Wheeze: NoW

Wheeze: W

105 54
Breathlessness: NoB

177 863
Breathlessness: NoB

257 357
Breathlessness: NoB

273 1778
Breathlessness: NoB

Age: 45-49
Breathlessness: B
269 88

Age: 50-54
Breathlessness: B

Age: 55-59
Breathlessness: B
406 152

Age: 60-64
Breathlessness: B
372 106

Wheeze: W
Wheeze: NoW
Wheeze: W
Wheeze: NoW
Wheeze: W
Wheeze: NoW
Wheeze: W
Wheeze: NoW

324 1712
Breathlessness: NoB

225 967
Breathlessness: NoB

132 526
Breathlessness: NoB

Breathlessness: NoB

Figure 4.7: Fourfold display for CoalMiners data, both margins equated.

However, note that the pattern of change over age is somewhat subtle compared to the dominant
positive association within each panel. When the goal is to display how the odds ratio varies with a
quantitative factor such as age, it is often better to simply calculate and plot the odds ratio directly.

The 1oddsratio () function in vcd calculates odds ratios. By default, it returns the log odds.
Use the option 10g=FALSE to get the odds ratios themselves. It is easy to see that the (log) odds
ratios decline with age.

> loddsratio (CM)
log odds ratios for Breathlessness and Wheeze by Age

25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64
3.6953 3.3983 3.1407 3.0147 2.7820 2.9264 2.4406 2.6380

> loddsratio (CM, log = FALSE)
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odds ratios for Breathlessness and Wheeze by Age

25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64
40.256 29.914 23.119 20.383 16.152 18.660 11.480 13.985

When the analysis goal is to understand how the odds ratio varies with a stratifying factor (which
could be a quantitative variable), it is often better to plot the odds ratio directly.

The lines below use the plot () method for "oddsratio” objects. This produces a line graph
of the log odds ratio against the stratum variable, together with confidence interval error bars. In
addition, because age is a quantitative variable, we can calculate and display the fitted relation for
a linear model relating 1odds to age. Here, we try using a quadratic model (poly (age, 2))
mainly to see if the trend is nonlinear.

lor_CM <- loddsratio (CM)
plot (lor_CM, bars=FALSE, baseline=FALSE, whiskers=.2)

lor_CM_df <- as.data.frame (lor_CM)
age <- seq(25, 60, by = 5) + 2
lmod <- 1Im(LOR ~ poly(age, 2), weights = 1 / ASE"2, data = lor_CM_df)
grid.lines (seq_along(age), fitted(lmod),
gp = gpar (col = "red", 1lwd = 2), default.units = "native")

+ V V VYV VYVYV

log odds ratios for Breathlessness and Wheeze by Age

LOR(Breathlessness / Wheeze)

25 —

[ T T T T T T 1
25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64

Age

Figure 4.8: Log odds plot for the CoalMiners data. The smooth curve shows a quadratic fit to age.  (fig:coalminer3)

In Figure 4.8, it appears that the decline in the log odds ratio levels off with increasing age. One
virtue of fitting the model in this way is that we can test the additional contribution of the quadratic
term, which turns out to be insignificant.

> summary (1lmod)

Call:
lm(formula = LOR ~ poly(age, 2), data = lor_CM_df, weights = 1/ASE"2)
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Weighted Residuals:
1 2 3 4 5 6 7 8
0.1617 0.0162 -0.2443 0.0627 -0.4971 1.6115 -1.5228 0.5851

Coefficients:
Estimate Std. Error t value Pr(>]|t])
(Intercept) 2.9953 0.0783 38.28 2.3e-07 *xx
poly(age, 2)1 -0.9977 0.2513 -3.97 0.011 =
poly (age, 2)2 0.1768 0.2171 0.81 0.452
Signif. codes: 0 'xxx' 0.001 '"%x%' 0.01 'x' 0.05 '.'" 0.1 ' ' 1

Residual standard error: 1.06 on 5 degrees of freedom
Multiple R-squared: 0.782,Adjusted R-squared: 0.694
F-statistic: 8.94 on 2 and 5 DF, p-value: 0.0223

4.5 Sieve diagrams

The wise ones fashioned speech with their thought, sifting it as grain is sifted through a
sieve.

Buddha

For two- (and higher-) way contingency tables, the design principles of perception, detection,
and comparison (see Chapter 1) suggest that we should try to show the observed frequencies in rela-
tion to what we would expect those frequencies to be under a reasonable null model—for example,
the hypothesis that the row and column variables are unassociated.

To this end, several schemes for representing contingency tables graphically are based on the
fact that when the row and column variables are independent, the estimated expected frequencies,
m,;, are products of the row and column totals (divided by the grand total).

NNy

= USSE

Then, each cell can be represented by a rectangle whose area shows the observed cell frequency, n;;,
expected frequency, m;;, or deviation (residual) from independence, n;; — m;;. Visual attributes
(color, shading) of the rectangles can be used to highlight the pattern of association.

4.5.1 Two-way tables

For example, for any two-way table, the expected frequencies under independence can be repre-
sented by rectangles whose widths are proportional to the total frequency in each column, 7 ;, and
whose heights are proportional to the total frequency in each row, n,,; the area of each rectangle is
then proportional to m;;. Figure 4.9 (left) shows the expected frequencies for the hair and eye color
data (Table 4.2), calculated using independence_table () invcd.

> haireye <- margin.table (HairEyeColor, 1:2)
> expected = independence_table (haireye)
> round (expected, 1)

Evye
Hair Brown Blue Hazel Green
Black 40.1 39.2 17.0 11.7
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Expected frequencies Observed frequencies
Eye Eye
Brown Blue Hazel Green Brown Blue Hazel Green
% 3
E 40.1 39.2 17 117 8
o 1]
c =4
3 106.3 103.9 44.9 30,9 3
» 0 = 0
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Figure 4.9: Sieve diagrams for the HairEyeColor data. Left: expected frequencies shown in
cells as numbers and the number of boxes; right: observed frequencies shown in cells.

Brown 106.3 103.9 44.9 30.9
Red 26.4 25.8 11.2 7.7
Blond 47.2 46.1 20.0 13.7

Figure 4.9 (left) simply represents the model—what the frequencies would be if hair color and
eye color were independent—not the data. Note, however, that the rectangles are cross-ruled so that
the number of boxes in each (counting up the fractional bits) equals the expected frequency with
which the cell is labeled, and moreover, the rulings are equally spaced in all cells. Hence, cross-
ruling the cells to show the observed frequency would give a data display that implicitly compares
observed and expected frequencies as shown in Figure 4.9 (right).

Riedwyl and Schiipbach (1983, 1994) proposed a sieve diagram (later called a parquet dia-
gram) based on this principle. In this display the area of each rectangle is always proportional to
expected frequency but observed frequency is shown by the number of squares in each rectangle, as
in Figure 4.9 (right).

Hence, the difference between observed and expected frequency appears as variations in the
density of shading. Cells whose observed frequency n;; exceeds the expected m;; appear denser
than average. The pattern of positive and negative deviations from independence can be more easily
seen by using color, say, red for negative deviations, and blue for positive.®

EXAMPLE 4.13: Hair color and eye color
The sieve diagram for hair color and eye color shown in Figure 4.9 (right) can be interpreted as
follows: The pattern of color and shading shows the high frequency of blue-eyed blonds and people
with brown eyes and dark hair. People with hazel eyes are also more likely to have red or brown
hair, and those with green eyes more likely to have red or blond hair, than would be observed under
independence. A

EXAMPLE 4.14: Visual acuity
In World War II, all workers in the UK Royal Ordnance factories were given test of visual

8Positive residuals are also shown by solid lines, negative residuals by broken lines, so that they may still be distinguished
in monochrome versions.

{fig:-HE-sieve}

{ex:haireye2}

{ex:visionl}
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acuity (unaided distance vision) of their left and right eyes on a 1 (high) to 4 (low) scale. The
dataset VisualAcuity in vcd gives the results for 10,719 workers (3,242 men, 7,477 women)
aged 30-39.

Figure 4.10 shows the sieve diagram for data from the larger sample of women (Kendall and
Stuart (1961, Table 33.5) and Bishop et al. (1975, p. 284)). The VisualAcuity datais a fre-
quency data frame and we first convert it to table form (VA), a 4 x 4 x 2 table to re-label the variables
and levels.

> # re-assign names/dimnames
> data("VisualAcuity", package = "vcd")
> VA <- xtabs(Freq ~ right + left + gender, data = VisualAcuity)
> dimnames (VA) [1:2] <- 1list(c("high", 2, 3, "low"))
> names (dimnames (VA) ) [1:2] <- paste(c("Right", "Left"), "eye grade")
> structable (aperm (VA) )
Left eye grade high 2 3 low

gender Right eye grade
male high 821 112 85 35

2 116 494 145 27

3 72 151 583 87

low 43 34 106 331
female high 1520 266 124 66

2 234 1512 432 78

3 117 362 1772 205

low 36 82 179 492

> sieve (VA[, , "female"], shade = TRUE)
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Figure 4.10: Vision classification for 7,477 women in Royal Ordnance factories. The high fre-
quencies in the diagonal cells indicate the main association, but a subtler pattern also appears in the
symmetric off-diagonal cells.
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The diagonal cells show the obvious: people tend to have the same visual acuity in both eyes, and
there is strong lack of independence. The off diagonal cells show a more subtle pattern that suggests
symmetry—the cells below the diagonal are approximately equally dense as the corresponding cells
above the diagonal. Moreover, the relatively consistent pattern on the diagonals +1, +2,... away
from the main diagonals suggests that the association may be explained in terms of the difference in
visual acuity between the two eyes.

These suggestions can be tested by fitting intermediate models between the null model of inde-
pendence (which fits terribly) and the saturated model (which fits perfectly), as we shall see later in
this book. A model of quasi-independence, for example (see Example 10.5 in Chapter 9) ignores
the diagonal cells and tests whether independence holds for the remainder of the table. The symme-
try model for a square table allows association, but constrains the expected frequencies above and
below the main diagonal to be equal. Such models provide a way of testing specific explanatory
models that relate to substantive hypotheses and what we observe in our visualizations. These and
other models for square tables are discussed further in Section 10.2. A

4.5.2 Larger tables: The strucplot framework

The implementation of sieve diagrams in vcd is far more general than illustrated in the examples
above. For one thing, the sieve function has a formula method, which allows one to specify the
variables in the display as a model formula. For example, for the VisualAcuity data, a plot of
the (marginal) frequencies for left and right eye grades pooling over gender can be obtained with
the call below (this plot is not shown).

> sieve (Freq ~ right + left, data = VisualAcuity, shade = TRUE)

More importantly, sieve diagrams are just one example of the strucplot framework, a general
system for visualizing n-way frequency tables in a hierarchical way. We describe this framework
in more detail in Section 5.3 in the context of mosaic displays. For now, we just illustrate the
extension of the formula method to provide for conditioning variables. In the call below, the formula
Freq ~ right + left | gender means to produce a separate block in the plot for the
levels of gender. The set_varnames argument relabels the variable names.

> sieve (Freq ~ right + left | gender, data = VisualAcuity,
+ shade = TRUE, set_varnames = c(right = "Right eye grade",
+ left = "Left eye grade"))

In Figure 4.11, the relative sizes of the blocks for the conditioning variable (gender) show the
much larger number of women than men in this data. Within each block, color and density of the
box rules shows the association of left and right acuity, and it appears that the pattern for men is
similar to that observed for women.

An alternative way of visualizing stratified data is a coplot or conditioning plot, which, for each
stratum, shows an appropriate display for a subset of the data. Figure 4.12 visualizes separate sieve
plots for men and women:

> cotabplot (VA, cond = "gender", panel = cotab_sieve, shade = TRUE)

The main difference to the extended sieve plots is that the distribution of the conditioning vari-
able is not shown, which basically is a loss of information, but advantageous if the distribution of
the conditioning variable(s) is highly skewed, since the partial displays of small strata will not be
distorted.

The methods described in Section 4.3.2 can be used to test the hypothesis of homogeneity of
association, and loglinear models described in Chapter 9 provide specific tests of hypotheses of
symmetry, quasi-independence, and other models for structured associations.

{sec:twoway-sieve-larger}

{ex:berkeley3}
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Figure 4.11: Sieve diagram for the three-way table of VisualAcuity, conditioned on gender.

gender = male

gender = female

high

Left eye grade
high 2 3 low

[ T R I N
FrrrTTTTT] T TaTrTT [
FrrTTTTTI O T T T A=
FETTTTTT 4+ d=b4+4d 1 11|
rrrrtTT LI B [
Enssssats REENENEN S
[ S E s Bk e b ak o & MR I
I B I
I Lld_LLld

rr i

L4 -

L1l

Left eye grade
2

o (]
g Bo
o N o
o [
q>|' 5 E\‘YMEMHTHY’BME [
b= £
= ) ]
o o
@
JJITL
JILCO
z foadien e s
o HETHHATHH HET
FRIIfC3IIrn. ggIHDUI\IDD?
Figure 4.12: Conditional Sieve diagram for the three-way table of VisualAcuity, conditioned on
gender.
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EXAMPLE 4.15: Berkeley admissions
This example illustrates some additional flexibility of sieve plots with the strucplot framework,
using the Berkeley admissions data. The left panel of Figure 4.13 shows the sieve diagrams for the
relation between department and admission, conditioned by gender. It can easily be seen that (a)
overall, there were more male applicants than female; (b) there is a moderately similar pattern of
observed > expected (blue) for males and females.

# conditioned on gender
sieve (UCBAdmissions, shade = TRUE, condvar = 'Gender')
# three-way table, Department first, with cell labels
sieve (~ Dept + Admit + Gender, data = UCBAdmissions,
shade = TRUE, labeling = labeling_values,
gp_text = gpar (fontface = 2), abbreviate_labs = c(Gender = TRUE))

+ + V V VYV

Admit Admit
Admitted Rejected Admitted Rejected
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Figure 4.13: Sieve diagrams for the three-way table of the Berkeley admissions data. Left: Admit
by Dept, conditioned on Gender; right: Dept re-ordered as the first splitting variable.

In the right panel of Figure 4.13, the three-way table was first permuted to make Dept the first
splitting variable. Each 2 x 2 table of Admit by Gender then appears, giving a sieve diagram
version of what we showed earlier in fourfold displays (Figure 4.6). The 1abeling argument is
used here to write the cell frequency in each rectangle. gp_text renders them in bold font, and
abbreviate_labs abbreviates the gender labels to avoid overplotting.

Alternatively, we can again use coplots to visualize conditioned sieve plots for this data. The
following calls produce Figure 4.14 and Figure 4.15, with different conditioning and styles.

> cotabplot (UCBAdmissions, cond = "Gender", panel = cotab_sieve,
+ shade = TRUE)

> cotabplot (UCBAdmissions, cond = "Dept", panel = cotab_sieve,
+ shade = TRUE, labeling = labeling_values,

<+ gp_text = gpar (fontface = "bold"))

Remark

Finally, for tables of more than two dimensions, there is a variety of different models for “indepen-
dence” (discussed in Chapter 9 on log-linear models), and the strucplot framework allows these to

{fig:berkeley-sieve}
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Figure 4.14: Conditional Sieve diagram for the three-way table of the Berkeley data, conditioned
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Figure 4.15: Conditional Sieve diagram for the three-way table of the Berkeley data, conditioned
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be specified with the expected argument, either as an array of numbers conforming to the data
argument, or as a model formula for 1loglm ().

For example, a sieve diagram may be used to determine if the association between gender and
department is the same across departments by fitting the model ~ Admit » Gender + Dept,
which says that Dept is independent of the combinations of Admit and Gender. This is done as
shown below, giving the plot in Figure 4.16.

> UCB2 <- aperm(UCBAdmissions, c(3, 2, 1))
> sieve (UCB2, shade = TRUE, expected = ~ Admit x Gender + Dept,
+ split_vertical = c (FALSE, TRUE, TRUE))
Gender
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Figure 4.16: Sieve diagram for the Berkeley admissions data, fitting the model of joint indepen-
dence, Admit * Gender + Dept.

In terms of the loglinear models discussed in Chapter 5, this is equivalent to fitting the model
of joint independence, [Admit Gender|[Dept]. Figure 4.16 shows the greater numbers of male
applicants in departments A and B (whose overall rate of admission is high) and greater numbers of

female applicants in the remaining departments (where the admission rate is low).
A

4.6 Association plots

In the sieve diagram the foreground (rectangles) shows expected frequencies; deviations from inde-
pendence are shown by color and density of shading. The association plot (Cohen, 1980, Friendly,
1991) puts deviations from independence in the foreground: the area of each box is made propor-
tional to the (observed — expected) frequency.

For a two-way contingency table, the signed contribution to Pearson x? for cell i, j is

nij — mij
Tijg = — —

= Pearson residual, 2= Z rfj . 4.5)
i,

mij

{fig:berkeley-sieve2 }

{sec:twoway-assoc }

{eq:Pearson-residual }
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In the association plot, each cell is shown by a rectangle, having:

* (signed) height ~ r;;,

e width = Mg,
so, the area of each cell is proportional to the raw residual, n;; — m;;. The rectangles for each row
in the table are positioned relative to a baseline representing independence (r;; = 0) shown by a

dotted line. Cells with observed > expected frequency rise above the line (and are colored blue);
cells that contain less than the expected frequency fall below it (and are shaded red).

> assoc(~ Hair + Eye, data = HairEyeColor, shade = TRUE)
> assoc (HairEyeColor, shade = TRUE)

Eye Eye
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Figure 4.17: Association plot for the hair-color eye-color data. Left: marginal table, collapsed over
gender; right: full table.
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Figure 4.17 (left) shows the association plot for the data on hair color and eye color. In con-
structing this plot, each rectangle is shaded according to the value of the Pearson residual from
Eqn. (4.5), using a simple scale shown in the legend, where residuals |r;;| > 2 are shaded blue or
red depending on their sign, and residuals |r;;| > 4 are shaded with a more saturated color.

One virtue of the association plot is that it is quite simple to interpret in terms of the pattern
of positive and negative r;; values. Bertin (1981) uses similar graphics to display large complex
contingency tables. Like the sieve diagram, however, patterns of association are most apparent
when the rows and columns of the display are ordered in a sensible way.

We note here that the association plot also belongs to the strucplot framework and thus extends
to higher-way tables. For example, the full HairEyeColor table is also classified by Sex. The
plot for the three-way table is shown in Figure 4.17 (right). In this plot the third table variable (Sex
here) is shown nested within the first two, allowing easy comparison of the profiles of hair and eye
color for males and females.

4.7 Observer agreement

When the row and column variables represent different observers’ rating the same subjects or ob-
jects, interest is focused on observer agreement rather than mere association. In this case, measures
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and tests of agreement provide a method of assessing the reliability of a subjective classification or
assessment procedure.

For example, two (or more) clinical psychologists might classify patients on a scale with cat-
egories (a) normal, (b) mildly impaired, (c) severely impaired. Or, ethologists might classify the
behavior of animals in categories of cooperation, dominance and so forth, or paleologists might clas-
sify pottery fragments according to categories of antiquity or cultural groups. As these examples
suggest, the rating categories are often ordered, but not always.

For two raters, a contingency table can be formed by classifying all the subjects/objects rated
according to the rating categories used by the two observers. In most cases, the same categories are
used by both raters, so the contingency table is square, and the entries in the diagonal cells are the
cases where the raters agree.

In this section we describe some measures of the strength of agreement and then a method for
visualizing the pattern of agreement. But first, the following examples show some typical agreement
data.

EXAMPLE 4.16: Sex is fun
The SexualFun table in vcd (Agresti (1990, Table 2.10), from Hout et al. (1987)) summarizes
the responses of 91 married couples to a questionnaire item: “Sex is fun for me and my partner: (a)
Never or occasionally, (b) Fairly often, (c) Very often, (d) Almost always.”

> data("SexualFun", package = "vcd")
> SexualFun

Wife
Husband Never Fun Fairly Often Very Often Always fun
Never Fun 7 7 2 3
Fairly Often 2 8 3 7
Very Often 1 5 4 9
Always fun 2 8 9 14

In each row the diagonal entry is not always the largest, though it appears that the partners tend
to agree more often when either responds “Almost always.” A

EXAMPLE 4.17: Diagnosis of MS patients

Landis and Koch (1977) gave data on the diagnostic classification of multiple sclerosis (MS)
patients by two neurologists, one from Winnipeg and one from New Orleans. There were two
samples of patients, 149 from Winnipeg and 69 from New Orleans, and each neurologist classified
all patients into one of four diagnostic categories: (a) Certain MS, (b) Probable MS, (c) Possible
MS, (d) Doubtful, unlikely, or definitely not MS.

These data are available in MSPatients, a4 x 4 x 2 table, as shown below. It is convenient
to show the data in separate slices for the Winnipeg and New Orleans patients:

> MSPatients[, , "Winnipeg"]

Winnipeg Neurologist
New Orleans Neurologist Certain Probable Possible Doubtful

Certain 38 5 0 1
Probable 33 11 3 0
Possible 10 14 5 6
Doubtful 3 7 3 10

> MSPatients[, , "New Orleans"]

Winnipeg Neurologist
New Orleans Neurologist Certain Probable Possible Doubtful

{ex:sexisfunl}

{ex:MS1}
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Certain 5 3 0 0

Probable 3 11 4 0

Possible 2 13 3 4

Doubtful 1 2 4 14
> apply (MSPatients, 3, sum) # show sample sizes

Winnipeg New Orleans
149 69

In this example, note that the distribution of degree of severity of MS may differ between the
two patient samples. As well, for a given sample, the two neurologists may be more or less strict
about the boundaries between the rating categories.

A

4.7.1 Measuring agreement

In assessing the strength of agreement we usually have a more stringent criterion than in measuring
the strength of association, because observers ratings can be strongly associated without strong
agreement. For example, one rater could use a more stringent criterion and thus consistently rate
subjects one category lower (on an ordinal scale) than another rater.

More generally, measures of agreement must take account of the marginal frequencies with
which two raters use the categories. If observers tend to use the categories with different frequency,
this will affect measures of agreement.

Here we describe some simple indices that summarize agreement with a single score (and asso-
ciated standard errors or confidence intervals). Von Eye and Mun (2006) treat this topic from the
perspective of loglinear models.

4.7.1.1 Intraclass correlation

An analysis of variance framework leads to the intraclass correlation as a measure of inter-rater
reliability, particularly when there are more than two raters. This approach is not covered here, but
various applications are described by Shrout and Fleiss (1979), and implemented in R in ICC () in
the psych (Revelle, 2015) package.

4.7.1.2 Cohen’s Kappa

Cohen’s kappa (x) (Cohen, 1960, 1968) is a commonly used measure of agreement that compares
the observed agreement to agreement expected by chance if the two observer’s ratings were inde-
pendent. If p;; is the probability that a randomly selected subject is rated in category ¢ by the first
observer and in category j by the other, then the observed agreement is the sum of the diagonal
entries, P, = >, p;;. If the ratings were independent, this probability of agreement (by chance)
would be P, = )", pi4 p+;. Cohen’s £ is then the ratio of the difference between actual agreement
and chance agreement, P, — P,, to the maximum value this difference could obtain:

PP

= (4.6)

When agreement is perfect, x = 1; when agreement is no better than would be obtained from
statistically independent ratings, x = 0. s could conceivably be negative, but this rarely occurs in
practice. The minimum possible value depends on the marginal totals.

For large samples (n4), x has an approximate normal distribution when Hy : x = 0 is true
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and its standard error (Fleiss, 1973, Fleiss et al., 1969) is given by

5 (k) = P.+ P2 =%, pisp+i(pit + D+i)
nyy (1= F)? .

Hence, it is common to conduct a test of Hy : k = 0 by referring z = £/6(x) to a unit normal
distribution. The hypothesis of agreement no better than chance is rarely of much interest, however.
It is preferable to estimate and report a confidence interval for .

4.7.1.3 Weighted Kappa

The original (unweighted) « only counts strict agreement (the same category is assigned by both
observers). A weighted version of x (Cohen, 1968) may be used when one wishes to allow for
partial agreement. For example, exact agreements might be given full weight, while a one-category
difference might be given a weight of 1/2. This typically makes sense only when the categories are
ordered, as in severity of diagnosis.

Weighted « uses weights, 0 < w;; < 1 for each cell in the table, with w;; = 1 for the diagonal
cells. In this case P, and P, are defined as weighted sums

P, = Z Z WijPij
i g
Z Z WijPi+P+j

z J

P

and these weighted sums are used in Eqn. (4.6).

For an R x R table, two commonly used patterns of weights are those based on equal spacing
of weights (Cicchetti and Allison, 1971) for a near-match, and Fleiss-Cohen weights (Fleiss and
Cohen, 1972), based on an inverse-square spacing,

wij = 1— % equal spacing
wy; = 1— J};ﬁ‘; Fleiss-Cohen

The Fleiss-Cohen weights attach greater importance to near disagreements, as you can see below
for a 4 x 4 table. These weights also provide a measure equivalent to the intraclass correlation.

Integer Spacing Inverse Square Spacing
Cicchetti Allison weights Fleiss—-Cohen weights
1 2/3 1/3 0 1 8/9 5/9 0
2/3 1 2/3 1/3 8/9 1 8/9 5/9
1/3 2/3 1 2/3 5/9 8/9 1 8/9
0 1/3 2/3 1 0 5/9 8/9 1

4.7.1.4 Computing Kappa

The function Kappa () in vcd calculates unweighted and weighted Kappa. The weights
argument can be used to specify the weighting scheme as either "Equal-Spacing"
or "Fleiss—Cohen". The function returns a "Kappa" object, for which there is a
confint.Kappa () method, providing confidence intervals. The summary .Kappa () method
also prints the weights.

The lines below illustrate Kappa for the SexualFun data.
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> Kappa (SexualFun)

value ASE z Pr(>|zl)
Unweighted 0.129 0.0686 1.89 0.05939
Weighted 0.237 0.0783 3.03 0.00244

> confint (Kappa (SexualFun))

Kappa lwr upr
Unweighted -0.0051204 0.26378
Weighted 0.0838834 0.39088

4.7.2 Observer agreement chart

The observer agreement chart proposed by Bangdiwala (1985, 1987) provides a simple graphic
representation of the strength of agreement in a contingency table, and alternative measures of
strength of agreement with an intuitive interpretation. More importantly, it shows the pattern of
disagreement when agreement is less than perfect.

4.7.2.1 Construction of the basic plot

Given a k x k contingency table, the agreement chart is constructed as an n X n square, where
n = n4 is the total sample size. Black squares, each of size n;; X n;;, show observed agreement.
These are positioned within k larger rectangles, each of size n;+ X n; as shown in the left panel
of Figure 4.18. Each rectangle is subdivided by the row/column frequencies n;; of row #/column j,
where cell (i, 1) is filled black. The large rectangle shows the maximum possible agreement, given
the marginal totals. Thus, a visual impression of the strength of agreement is given by

p _ area of dark squares _ Zf nZ . @.7)
area of rectangles S iy g

When there is perfect agreement, the k rectangles determined by the marginal totals are all squares,
completely filled by the shaded squares reflecting the diagonal n;; entries, and B = 1.

> agreementplot (SexualFun, main
> agreementplot (SexualFun, main

"Unweighted", weights = 1)
"Weighted")

4.7.2.2 Partial agreement

Partial agreement is allowed by including a weighted contribution from off-diagonal cells, b steps
from the main diagonal. For a given cell frequency, n;;, a pattern of weights, wi,wa, ..., wy is
applied to the cell frequencies as shown schematically below:

Ni—b,i Wp
n’i,i—b .« e ni,i .« e nl,l+b @ wb .« e 1 .« e wb
Mitbi Wp

These weights are incorporated in the agreement chart (right panel of Figure 4.18) by succes-
sively lighter shaded rectangles whose size is proportional to the sum of the cell frequencies, denoted
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Figure 4.18: Agreement charts for husbands’ and wives’ sexual fun. Left: unweighted chart, show-
ing only exact agreement; right: weighted chart, using weight w; = 8/9 for a one-step disagree-
ment.

Ap;, shown above. Aj; allows 1-step disagreements, using weights 1 and wy; Ao; includes 2-step
disagreements, etc. From this, one can define a weighted measure of agreement, B*, analogous to
weighted x:

BY — weighted sum of areas of agreement 1 Zf [isni; —nZ — S0 wyAp]
N area of rectangles n S niyng
where wy, is the weight for Ay;, the shaded area b steps away from the main diagonal, and g is the
furthest level of partial disagreement to be considered.

The function agreementplot () actually calculates both B and B* and returns them invisi-
bly as the result of the call. The results, B = 0.146, and B" = 0.498, indicate a stronger degree of
agreement when 1-step disagreements are included.

> B <- agreementplot (SexualFun)
> unlist (B) [1 : 2]

Bangdiwala Bangdiwala_Weighted
0.14646 0.49817

EXAMPLE 4.18: Mammogram ratings
The Mammograms data in vCdExtra gives a 4 x 4 table of (probably contrived) ratings of 110
mammograms by two raters from Kundel and Polansky (2003), used to illustrate the calculation and
interpretation of agreement measures in this context.’

> data("Mammograms", package = "vcdExtra")
> B <- agreementplot (Mammograms, main = "Mammogram ratings")

The agreement plot in Figure 4.19 shows substantial agreement among the two raters, particu-
larly when one-step disagreements are taken into account. Careful study of this graph shows that

9In practice, of course, rater agreement on severity of diagnosis from radiology images varies with many factors. See
Antonio and Crespi (2010) for a meta-analytic study concerning agreement in breast cancer diagnosis.

{ex:mammograms}
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Mammogram ratings

42 . 24 | 16 | 28
<
& 17
(]
)
ol
g 23
o
=
Al _
A ®©
3£ 24
© S
[0} L
o
€
2 46
<

Absent Minimal Moderate  Severe

Reader1

Figure 4.19: Agreement plot for the Mammograms data.

the two raters more often agree exactly for the extreme categories of “Absent” and “Severe.” The
amounts of unweighted and weighted agreement are shown numerically in the B and B" statistics.

> unlist (B) [1 : 2]

Bangdiwala Bangdiwala_ Weighted
0.42721 0.83665

4.7.3 Observer bias in agreement

With an ordered scale, it may happen that one observer consistently tends to classify the objects
into higher or lower categories than the other, perhaps due to using stricter thresholds for the bound-
aries between adjacent categories. This bias produces differences in the marginal totals, (n;4 and
n4;), and decreases the maximum possible agreement. While special tests exist for marginal ho-
mogeneity, the observer agreement chart shows this directly by the relation of the dark squares to
the diagonal line: When the marginal totals are the same, the squares fall along the diagonal. The
measures of agreement, x and B, cannot determine whether lack of agreement is due to such bias,
but the agreement chart can detect this.

EXAMPLE 4.19: Diagnosis of MS patients
Agreement charts for both patient samples in the MSPat ient s data are shown in Figure 4.20.
The agreementplot () function only handles two-way tables, so we use cotabplot () with
the agreementplot panel function to handle the Pat ient s stratum:

> cotabplot (MSPatients, cond = "Patients", panel = cotab_agreementplot,
+ text_gp = gpar (fontsize = 18), xlab_rot=20)

{figzmammograms1}
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Figure 4.20: Weighted agreement charts for both patient samples in the MSPatients data. Departure
of the middle rectangles from the diagonal indicates lack of marginal homogeneity.

It can be seen that, for both groups of patients, the rectangles for the two intermediate categories
lie largely below the diagonal line (representing equality). This indicates that the Winnipeg neu-
rologist tends to classify patients into more severe diagnostic categories. The departure from the
diagonal is greater for the Winnipeg patients, for whom the Winnipeg neurologist uses the two most
severe diagnostic categories very often, as can also be seen from the marginal totals printed in the
plot margins.

Nevertheless, there is a reasonable amount of agreement if one-step disagreements are allowed,
as can be seen in Figure 4.20 and quantified in the B" statistics below. The agreement charts also
serve to explain why the B measures for exact agreement are so much lower.

> agrl <- agreementplot (MSPatients[, , "Winnipeg"])
> agr2 <- agreementplot (MSPatients[, , "New Orleans"])
> rbind (Winnipeg = unlist (agrl), NewOrleans = unlist(agr2)) [, 1 : 2]

Bangdiwala Bangdiwala_Weighted
Winnipeg 0.27210 0.73808
NewOrleans 0.28537 0.82231

4.8 Trilinear plots

The trilinear plot (also called a ternary diagram or trinomial plot) is a specialized display for a
3-column contingency table or for three variables whose relative proportions are to be displayed.
Individuals may be assigned to one of three diagnostic categories, for example, or a chemical process
may yield three constituents in varying proportions, or we may look at the division of votes among
three parties in a parliamentary election. This display is useful, therefore, for both frequencies and
proportions.

{sec:twoway-trilinear}
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Trilinear plots are featured prominently in Aitchison (1986), who describes statistical models
for this type of compositional data. Upton (1976, 1994) uses them in detailed analyses of spatial
and temporal changes in British general elections. Wainer (1996) reviews a variety of other uses of
trilinear plots and applies them to aid in understanding the distributions of students’ achievement
in the National Assessment of Educational Progress, making some aesthetic improvements to the
traditional form of these plots along the way.

A trilinear plot displays each observation as a point inside an equilateral triangle whose coordi-
nates correspond to the relative proportions in each column. The three vertices represent the three
extremes when 100% occurs in one of the three columns; a point in the exact center corresponds to
equal proportions of % in all three columns. In fact, each point represents the (weighted) barycen-
ter of the triangle, the coordinates representing weights placed at the corresponding vertices. For
instance, Figure 4.21 shows three points whose compositions of three variables, A, B, and C, are
given in the data frame DATA below.

> library (ggtern)

> DATA <- data.frame (

+ A = c (40, 20, 10),

B c (30, 60, 10),

C = c(30, 20, 80),

ld P C("l", ||2", IIBH))

aesthetic_mapping <- aes(x = C, y = A, z = B, colour = id)
ggtern (data = DATA, mapping = aesthetic_mapping) +
geom_point (size = 4) +
theme_rgbw ()

+ 4+ V VIVttt

(The plot shown requires some more cosmetic parameters not shown for simplicity).

Note that each apex corresponds to 100% of the labeled variable, and the percentage of this
variable decreases linearly along a line to the midpoint of the opposite baseline. The grid lines in
the figure show the percentage value along each axis.

The construction of trilinear plots is described in detail in http://en.wikipedia.org/

w "%

[\
@
R~ :\\4
&

Figure 4.21: A trilinear plot showing three points, for variables A, B, C.



4.8: Trilinear plots 155

wiki/Ternary_plot. Briefly, let P(a,b, ¢) represent the three components normalized so that
a+ b+ ¢ = 1.0. If the apex corresponding to Point A in Figure 4.21 is given (x, y) coordinates of
(xa,y4) = (0,0), and those at apex B are (zp,yp) = (100, 0), then the coordinates of apex C are
(e, yc) = (50,50/3). The cartesian coordinates (xp, yp) of point P are then calculated as

yp = CYc

rp = Yp <yo_y3)+\/§yc(1‘1)-

ro —Ip 2

In R, trilinear plots are implemented in the t riplot () function in the TeachingDemos (Snow,

2013) package, and also in the ggtern (Hamilton, 2014) package, an extension of the ggplot2 (Wick-
ham and Chang, 2015) framework. The latter is much more flexible, because it inherits all of the ca-
pabilities of ggplot2 for plot annotations, faceting, and layers. In essence, the function ggtern ()
is just a wrapper for ggplot (.. .), which adds a change in the coordinate system from cartesian
(X, y) coordinates to the ternary coordinate system with coord_tern ().

EXAMPLE 4.20: Lifeboats on the Titanic

We examine the question of who survived and why in the sinking of the RMS Titanic in Chapter 5
(Example 5.19, Example 5.21, Exercise 5.12), where we analyze a four-way table, Titanic, of
the 2,201 people on board (1,316 passengers and 885 crew), classified by Class, Sex, Age,
and Survival. A related data set, Li feboats in vcd, tabulates the survivors according to the
lifeboats on which they were loaded. This data sheds some additional light on the issue of survival
and provides a nice illustration of trilinear plots.

A bit of background: after the disaster, the British Board of Trade launched several inquiries,
the most comprehensive of which resulted in the Report on the Loss of the “Titanic” (S.S.) by Lord
Mersey (Mersey, 1912).'9 The data frame i feboat s in vcd contains the data listed on page 38
of that report.!!

Of interest here is the composition of the boats by the three categories: men, women and chil-
dren, and crew, and according to the launching of the boats from the port or starboard side. This can
be shown in a trilinear display using the following statements. The plot, shown in Figure 4.22, has
most of the points near the bottom left, corresponding to a high percentage of women and children.
We create a variable, 1d, used to label those boats with more than 10% male passengers. In the
ggplot2 framework, plot aesthetics such as color and shape can be mapped to variables in the
data set, and here we map these both to side of the boat.

ggtern (data = Lifeboats, mapping = AES) +
geom_text () +
geom_point (size=2) +
geom_smooth_tern (method = "1m", alpha = 0.2)

> data("Lifeboats", package = "vcd")

> # label boats with more than 10% men

> Lifeboats$id <- ifelse(Lifeboats$Smen / LifeboatsS$total > .1,
+ as.character (LifeboatsS$boat), "")

>

> AES <- aes(x = women, y = men, z = crew, colour = side, shape = side,
+ label = id)

>

+

+

+

10The Titanic was outfitted with 20 boats, half on each of the port and starboard sides, of which 14 were large lifeboats
with a capacity of 65, two were emergency boats designed for 40 persons, and the remaining four were collapsible boats
capable of holding 47, a total capacity of 1, 178 (considered adequate at that time). Two of the collapsible boats, lashed to
the roof of the officers’ quarters, were ineffectively launched and utilized as rafts after the ship sunk. The report lists the
time of launch and composition of the remaining 18 boats according to male passengers, women and children, and “men of
crew,” as reported by witnesses.

"I'The “data” lists a total of 854 in 18 boats, although only 712 were in fact saved. Mersey notes “it is obvious that these
figures are quite unreliable.”

{ex:lifeboat1}
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Lifeboats on the Titanic
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Figure 4.22: Lifeboats on the Titanic, showing the composition of each boat. Boats with more than
10% male passengers are labeled.

The resulting plot in Figure 4.22 (for which some more cosmetic parameters than shown in
the code above have been used) makes it immediately apparent that many of the boats launched
from the port side differ substantially from the starboard boats, whose passengers were almost
entirely women and children. Boat 1 had only 20% (2 out of 10) women and children, while the
percentage for boat 3 was only 50% (25 out of 50). We highlight the difference in composition
of the boats launched from the two sides by adding seperate linear regression lines for the relation
men ~ women.

The trilinear plot scales the numbers for each observation to sum to 1.0, so differences in the
total number of people on each boat cannot be seen in Figure 4.22. The total number reported
loaded is plotted against 1aunch time in Figure 4.23, with a separate regression line and loess
smooth fit to the data for the port and starboard sides (code again simplified for clarity):

> AES <- aes(x = launch, y = total, colour = side, label = boat)
> ggplot (data = Lifeboats, mapping = AES) +

+ geom_text () +

+ geom_smooth (method = "1m", aes(fill = side), size = 1.5) +
+ geom_smooth (method = "loess", aes(fill = side), se = FALSE,
G2 size = 1.2)

From the linear regression lines in Figure 4.23, it seems that the rescue effort began in panic
on the port side, with relatively small numbers loaded, and (from Figure 4.22), small proportions
of women and children. But the loading regime on that side improved steadily over time. The
procedures began more efficiently on the starboard side but the numbers loaded increased only
slightly. The smoothed loess curves indicate that over time, for each side, there was still a large

variability from boat to boat.
A

{fig:lifeboats1}



{fig:lifeboats2}

{sec:twoway-summary }

4.9:

Chapter summary 157

side

50 - Port

D

/——\ \/ == Starboard
.

25- .

Total loaded

! ! ! ! ! i
00:45 01:00 01:15 01:30 01:45 02:00
Launch time

Figure 4.23: Number of people loaded on lifeboats on the Titanic vs. time of launch, by side of
boat. The plot annotations show the linear regression and loess smooth.

4.9 Chapter summary

A contingency table gives the frequencies of observations cross-classified by two or more cat-
egorical variables. With such data we are typically interested in testing whether associations
exist, quantifying the strength of association, and understanding the nature of the association
among these variables.

For 2 x 2 tables, association is easily summarized in terms of the odds ratio or its logarithm.
This measure can be extended to stratified 2 x 2 x k tables, where we can also assess whether
the odds ratios are equal across strata or how they vary.

For R x C tables, measures and tests of general association between two categorical vari-
ables are most typically carried out using the Pearson’s chi-squared or likelihood-ratio tests pro-
vided by assocstats (). Stratified tests controlling for one or more background variables,
and tests for ordinal categories, are provided by the Cochran—Mantel-Haenszel tests given by
CMHtest ().

For 2 x 2 tables, the fourfold display provides a visualization of the association between vari-
ables in terms of the odds ratio. Confidence rings provide a visual test of whether the odds
ratio differs significantly from 1. Stratified plots for 2 x 2 x k tables are also provided by
fourfold().

Sieve diagrams and association plots provide other useful displays of the pattern of association
in R x C tables. These also extend to higher-way tables as part of the strucplot framework.

When the row and column variables represent different observers rating the same subjects, inter-
est is focused on agreement rather than mere association. Cohen’s « is one measure of strength
of agreement. The observer agreement chart provides a visual display of how the observers
agree and disagree.

Another specialized display, the trilinear plot, is useful for three-column frequency tables or
compositional data.
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4.10 Lab exercises

Exercise 4.1 The data set fat, created below, gives a 2 x 2 table recording the level of cholesterol
in diet and the presence of symptoms of heart disease for a sample of 23 people.

> fat <- matrix(c(6, 4, 2, 11), 2, 2)
> dimnames (fat) <- list (diet = c("LoChol", "HiChol"),
+ disease = c("No", "Yes"))

(a) Use chisqg.test (fat) to test for association between diet and disease. Is there any indi-
cation that this test may not be appropriate here?

(b) Use a fourfold display to test this association visually. Experiment with the different options
for standardizing the margins, using the margin argument to fourfold (). What evidence
is shown in different displays regarding whether the odds ratio differs significantly from 1?

(c) oddsratio(fat, log = FALSE) will give you a numerical answer. How does this
compare to your visual impression from fourfold displays?

(d) With such a small sample, Fisher’s exact test may be more reliable for statistical inference.
Use fisher.test (fat), and compare these results to what you have observed before.

(e) Write a one-paragraph summary of your findings and conclusions for this data set.

Exercise 4.2 The data set Abortion in vedExtra gives a 2 x 2 x 2 table of opinions regarding
abortion in relation to sex and status of the respondent. This table has the following structure:

> data("Abortion", package = "vcdExtra")
> str (Abortion)

table [1:2, 1:2, 1:2] 171 152 138 167 79 148 112 133

- attr(x, "dimnames")=List of 3
..$ Sex : chr [1:2] "Female" "Male"
..$ Status : chr [1:2] "Lo" "Hi"

..$ Support_Abortion: chr [1:2] "Yes" "No"

(a) Taking support for abortion as the outcome variable, produce fourfold displays showing the
association with sex, stratified by status.

(b) Do the same for the association of support for abortion with status, stratified by sex.

(c) For each of the problems above, use oddsratio () to calculate the numerical values of the
odds ratio, as stratified in the question.

(d) Write a brief summary of how support for abortion depends on sex and status.

Exercise 4.3 The JobSat table on income and job satisfaction created in Example 2.5 is con-
tained in the vcdExtra package.

(a) Carry out a standard x? test for association between income and job satisfaction. Is there any
indication that this test might not be appropriate? Repeat this test using simulate.p.value
= TRUE to obtain a Monte Carlo test that does not depend on large sample size. Does this
change your conclusion?

(b) Both variables are ordinal, so CMH tests may be more powerful here. Carry out that analysis.
What do you conclude?

Exercise 4.4 The Hospital data in vcd gives a 3 x 3 table relating the length of stay (in years)
of 132 long-term schizophrenic patients in two London mental hospitals with the frequency of visits
by family and friends.
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(a) Carry out a x? test for association between the two variables.

(b) Use assocstats () to compute association statistics. How would you describe the strength
of association here?

(c) Produce an association plot for these data, with visit frequency as the vertical variable. De-
scribe the pattern of the relation you see here.

(d) Both variables can be considered ordinal, so CMHtest () may be useful here. Carry out that
analysis. Do any of the tests lead to different conclusions?

Exercise 4.5 Continuing with the Hospital data:

(a) Try one or more of the following other functions for visualizing two-way contingency ta-
bles with this data: plot (), tile (), mosaic (), and spineplot (). [For all except
spineplot (), itis useful to include the argument shade=TRUE].

(b) Comment on the differences among these displays for understanding the relation between
visits and length of stay.

Exercise 4.6 The two-way table Mammograms in vcdExtra gives ratings on the severity of diag-
nosis of 110 mammograms by two raters.

(a) Assess the strength of agreement between the raters using Cohen’s x, both unweighted and
weighted.

(b) Use agreementplot () for a graphical display of agreement here.

(c) Compare the Kappa measures with the results from assocstats (). What is a reasonable
interpretation of each of these measures?

Exercise 4.7 Agresti and Winner (1997) gave the data in Table 4.8 on the ratings of 160 movies
by the reviewers Gene Siskel and Roger Ebert for the period from April 1995 through September
1996. The rating categories were Con (“thumbs down”), Mixed, and Pro (“thumbs up”).

Table 4.8: Movie ratings by Siskel & Ebert, April 1995-September 1996. Source: Agresti and
Winner (1997)

Ebert
Con Mixed Pro | Total
Con | 24 8 13 | 45
Siskel Mixed | 8 13 11 |32
Pro | 10 9 64 | 83
Total | 42 30 88 | 160

(a) Assess the strength of agreement between the raters using Cohen’s x, both unweighted and
weighted.

(b) Use agreementplot () for a graphical display of agreement here.

(c) Assess the hypothesis that the ratings are symmetric around the main diagonal, using an ap-
propriate x? test. Hint: Symmetry for a square table T' means that ¢;; = t;; for i # j. The
expected frequencies under the hypothesis of symmetry are the average of the off-diagonal
cells, E= (T +TT)/2.

(d) Compare the results with the output of mcnemar.test ().

Exercise 4.8 For the VisualAcuity data set:

(a) Use the code shown in the text to create the table form, VA . tab.
(b) Perform the CMH tests for this table.

{lab:4.5}

{lab:4.6}

{lab:4.7}

{tab:siskel-ebert}

{lab:4.8}
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(c) Use the woolf_test () described in Section 4.3.2 to test whether the association between
left and right eye acuity can be considered the same for men and women.
{lab:4.9}
Exercise 4.9 The graph in Figure 4.23 may be misleading, in that it doesn’t take into account of the
differing capacities of the 18 life boats on the Titanic, given in the variable cap in the Li feboats

data.

(a) Calculate a new variable, pct 1loaded, as the percentage loaded relative to the boat capacity.
(b) Produce a plot similar to Figure 4.23, showing the changes over time in this measure.
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