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Introduction

In recent years methods for data representing functions or curves have
received much attention. Such data are known in the literature as the
functional data (Ramsay & Silverman, 2005). Examples of functional data
can be found in several application domains, such as medicine, economics,
meteorology and many others. In many applications there is need for using
statistical methods for objects characterized by many features observed in
many time points. Such data are called the multivariate functional data.

In this presentation we focused at relations between multiple sets of
variables of multivariate functional data.
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Stochastic processes

Let us assume that XXX ∈ Lp2(I ) is a random process, where L2(I ) is a
Hilbert space of square integrable functions on the interval I .
Additionally, we also assume that

E(XXX (t)) = 000, t ∈ I .
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Smoothing

We will further assume that each component Xg of the process XXX can be
represented by a finite number of basis functions {ϕe}:

Xg (t) =

Bg∑
e=0

αgeϕe(t), s ∈ I , g = 1, 2, ..., p.

The degree of smoothness of function Xg depends on the value Bg (a
small values cause more smoothing of the functions).
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Smoothing

We introduce the following notation:

ααα = (α10, ..., α1B1 , ..., αp0, ..., αpBp)>,

ΦΦΦ(s) =


ϕϕϕ>
B1

(t) 000 . . . 000
000 ϕϕϕ>

B2
(t) . . . 000

. . . . . . . . . . . .
000 000 . . . ϕϕϕ>

Bp
(t)

 ,
where ϕϕϕB1 , ...,ϕϕϕBp are orthonormal basis functions of space L2(I ).
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Smoothing

Using the above matrix notation the random process XXX can be represented
as

XXX (t) = ΦΦΦ(t)ααα. (1)

This means that the realizations of process XXX are in finite dimensional
subspace Lp2(I ) of Lp2(I ).
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Estimation

We can estimate the vector ααα on the basis of n independent realizations
xxx1,xxx2, . . . ,xxxn of the random process XXX (functional data) using eg.
maximum likelihood method.

Details of the process of transformation of discrete data to functional data
can be found eg. in Ramsay and Silverman (2005).
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Canonical correlation analysis

Canonical correlation analysis (Hotelling, 1936) is the study of the linear
relations between two sets of variables. Let XXX 1 = (X11, . . . ,X1p)> and
XXX 2 = (X21, . . . ,X2q)> denote random vectors with mean vectors µµµ1 and
µµµ2 and covariance matrices ΣΣΣ11 and ΣΣΣ22. Without loss of generality we
can assume that µµµ1 = µµµ2 = 000.

Let XXX> = (XXX>
1 ,XXX

>
2 ) has the covariance matrix of the form

ΣΣΣ =

[
ΣΣΣ11 ΣΣΣ12
ΣΣΣ21 ΣΣΣ22

]
.
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Canonical correlation analysis

The first pair of canonical variables (U11,U21) is defined via the pair of
linear combinations of XXX 1 and XXX 2:

U11 = lll>11XXX 1, U21 = lll>21XXX 2

that maximize the correlation between U1 and U2, i.e. maximize

Corr(U1,U2) = Corr(lll>1 XXX 1, lll
>
2 XXX 2) (2)

subject to U1 and U2 having unit variances.

Remaining canonical variables (U1j ,U2j) maximize (2) subject to having
unit variances and being uncorrelated with (U1k ,U2k), k < j .
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Canonical correlation analysis

If we denote U = lll>XXX , where lll> = (lll>1 , lll
>
2 ), then

Var(U) = lll>ΣΣΣlll = lll>1 ΣΣΣ11lll1 + lll>2 ΣΣΣ22lll2 + 2lll>1 ΣΣΣ12lll2, (3)

and the problem of maximizing the expression (2) is equivalent to the
problem of maximizing (3) subject to Var(U1) = lll>1 ΣΣΣ11lll1 = 1, and
Var(U2) = lll>2 ΣΣΣ22lll2 = 1.
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Generalized canonical correlation analysis

Now, we consider the generalized version of canonical correlation analysis
(Carroll, 1968), that allows to analyze several sets of variables
simultaneously.

Let XXX i = (Xi1, . . . ,Xipi )
> denote random vectors with zero mean vector

and covariance matrices ΣΣΣii , i = 1, . . . ,K . Moreover, let
XXX> = (XXX>

1 , . . . ,XXX
>
K ), and

Var(XXX ) =


ΣΣΣ11 ΣΣΣ12 · · · ΣΣΣ1K
ΣΣΣ21 ΣΣΣ22 ΣΣΣ2K

...
...

...
ΣΣΣK1 ΣΣΣK2 · · · ΣΣΣKK

 .
Now, we seek for K canonical variables U11, . . . ,UK1 being the linear
combination of XXX 1, . . . ,XXXK respectively, that maximize the sum of
correlations between each pair of canonical variables, and having unit
variances.
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Generalized canonical correlation analysis

Denote Ui = lll>i XXX i , i = 1, . . . ,K , lll> = (lll I , . . . , lllK ), and U = lll>XXX . Then
the main problem of generalized canonical correlation analysis may be
formulated as maximize Var(U) subject to Var(Ui ) = 1, i = 1, . . . ,K .
Note that the problem of maximizing Var(U) is equivalent to the problem
of maximizing

K∑
i ,j=1,i<j

Cov(Ui ,Uj) =
K∑

i ,j=1,i<j

lll>i ΣΣΣijlll j

subject to
Var(Ui ) = lll>i ΣΣΣii lll i = 1, i = 1, . . . ,K .
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Generalized canonical correlation analysis for the functional data

In the case of random processes, we define the K canonical variables
U1, . . . ,UK as a dot product, i.e.

Ui =< lll i ,XXX i >=

∫
I
lll>i (t)XXX i (t)dt,

where lll i ∈ Lp2(I ), i = 1, . . . ,K .
In this case, we may assume (Ramsay and Silverman (2005)) that the
vector weight function lll i and the process XXX i are in the same space, i.e.
the function lll i can be written in the form

lll i (t) = ΦΦΦi (t)λλλi , (4)

where λλλi ∈ RBi1+...+Bipi .
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Generalized canonical correlation analysis for the functional data

Hence

Ui =< lll i ,XXX i >= λλλ>i [

∫
I

ΦΦΦ>(t)ΦΦΦ(t)dt]αααi = λλλ>i αααi ,

where αααi and λλλi are vectors occurring in the representations (1) and (4) of
process XXX i and function lll i , i = 1, . . . ,K .

So our problem may be reduced to the problem involving only random
vectors αααi and λλλi .

Górecki, Krzyśko, Wołyński (UAM) 10 / 12



Example – Polish regions

As a real example we used agriculture data about Polish regions
available at Central Statistical Office (Poland) website
(http://stat.gov.pl/). We have crops (in quintals per hectare) from
2003-2016 (14 years and 16 voivodeships). Data set (in total 30 variables)
is split into three natural blocks:

Section 1 (9 variables): wheat, rye, barley, oat, triticale, buckwheat,
millet, potatoes and sugar beet.

Section 2 (6 variables): legume fodder, clover, lucerne, serradella,
field crops, root fodder.

Section 3 (15 variables): cabbage, cauliflower, onion, carrot,
cucumbers, tomatoes, apples, pears, plums, cherries, sweet cherries,
strawberries, raspberries, currants, gooseberry.
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Example – Polish regions
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Example – Polish regions

During the smoothing process we used Fourier basis with 9 components
(eg. apples – discrete data on the left and smoothed data on the right).
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Example – Polish regions

In the next step we applied described earlier method.

We used packages RGCCA and fda from R free software environment.
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Example – Polish regions
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