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Introduction

In practice, it often happens that we have a number of base methods of
classification. We are not able to clearly determine which method is
optimal in the sense of the smallest error rate. Then we have a combined
methods that allows us to consolidate information from multiple sources in
a better classifier. Ensemble methods use multiple models to obtain better
predictive performance than could be obtained from any of the constituent
models. An ensemble is a technique for combining many learners in an
attempt to produce a strong learner. By combining the outputs of a team
of classifiers, we aim at a more accurate decision than that of the single
best member of the team. Empirically, ensembles tend to yield better
results when there is a significant diversity among the models. It has
become clear that for more complicated data sets the traditional set of
classifiers can be improved by various types of combining rules. Often
none of the base classifiers is powerful enough to distinguish the classes
optimally. Different classifiers may be desired for different features, or may
reveal different possibilities for separating the data.
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Introduction

The question arises how the base classifiers should be combined. Various
possibilities exist, based on fixed rules like mean or product combing and
majority voting. In addition one may also train a classifier e.g. BKS
method, Wernecke’s method or fuzzy integral. The most intuitive one is a
simple majority vote, whereby every base classifier computes a class label
and the label that receives the most votes is the output of the ensemble.
We can also combine the posterior probability of observing a successful
treatment. This continuous measure can be combined using further simple
functions: mean returns the mean probability of success by the classifiers;
min yields the minimal probability of success (a pessimistic measure); max
results in the maximal predicted probability of success (an optimistic
measure); median returns the median probability.
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Introduction

I propose some fusion of parallel and stacked combining. I am using many
different base classifiers (stacked combining) but in subsequent steps I
partly change original data set (parallel combining). Six non-trainable
combiners was used: mean, minimum, maximum, median, trimmed mean
and product and five base methods: linear and quadratic discriminant
classifier, naive Bayes classifier, 3 nearest neighbours method and binary
decision tree. The essence of my method relies on the sequential joining of
additional features, on which the classifiers are trained. These additional
features are posterior probabilities obtained from a mean method of
combining posterior probabilities from other combining method. All the
time the same base methods of classification are used. In each step,
however, we add the posterior probabilities obtained on a slightly different
data set, because the posterior probabilities varies at each step. We
therefore have many classifiers trained on slightly different data sets.
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Base classifiers

Suppose that a training sample has been collected by sampling from a
population P consisting of K groups. The ith observation is a pair denoted
by (x i , yi ), where x i is a d -dimensional feature vector and yi is the label
for recording class membership. An automated classifier can be viewed as
a method of estimating the posterior probability of membership. For a
given x , a reasonable classification strategy is to assign x to that class
with the highest posterior probability. This strategy is called the Bayes’
rule classifier. We denote the posterior probability of membership by

pk(x) = P(y = k |x).

Let πk be the prior probability. Suppose also that the conditional
multivariate probability density for the kth class is fk(x). Now Bayes’
theorem yields the posterior probability

pk(x) =
fk(x)πk
K∑
i=1

fi (x)πi

.
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Base classifiers

Now we assume that all multivariate probability densities are multivariate
normal having arbitrary mean vectors and a common covariance matrix.
That is, we take fk to be an Np(µk ,Σ) density. We shall call this model
the linear discriminant classifier (LDC). Assuming that class-covariance
matrices are different, that is fk is an Np(µk ,Σk) density we obtain
quadratic discriminant classifier (QDC).
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Base classifiers

A naive Bayes classifier is a simple probabilistic classifier based on applying
Bayes’ theorem with independence assumptions. Simply speaking, we
assumes that the presence or absence of a particular feature is unrelated to
the presence or absence of any other feature, given the class variable.
Under this assumption we have:

pk(x) ∝ πk

d∏

i=1

fi (xi),

where fi is density of variable xi . When dealing with continuous data, a
typical assumption is that the continuous values associated with each class
are distributed according to a normal distribution (one-dimensional).
Despite the fact that the independence assumptions are often inaccurate,
the naive Bayes classifier can be robust enough to ignore serious
deficiencies in its underlying naive probability model.
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Base classifiers

The three previous classifiers assumed that the features are normally
distributed. Most often we do not have sufficient knowledge of the
underlying distributions. One of the important nonparametric classifiers is
a j-nearest neighbor classifier (jNN classifier). The estimator of pk(x)
produced by the jNN classifier is the sample proportion of the j-nearest
neighbors belonging to Gk (objects are assigned to the class having the
majority in the j nearest neighbours in the training set):

p̂k(x) =
1

j

N∑

i=1

I (ρ(x , x i ) ≤ dj(x))I (yi = k), k = 1, . . . ,K ,

where I (A) is the indicator function of the event A, dj(x0) is the j-th
distance from the point x to the points x1, . . . , xN and ρ is a given
measure. Usually ρ is an Euclidean metric. For j > 2 posterior probabilities
are estimated using the class frequencies in the set of j neighbours.
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Base classifiers

Another example of nonparametric classifier is a decision tree. They are
widely used for building classifier ensembles. They are intuitive because
the decision process can be traced as a sequence of simple decisions. To
construct a decision tree we start with the root and continue splitting the
tree. This process is repeated on each derived subset in a recursive manner
called recursive partitioning. That part is subsequently split into smaller
part until a termination criterion is met. To automate the tree
construction it is reasonable to choose binary tree, that is, each
nonterminal node has exactly two children nodes. Our algorithm computes
a binary decision tree. Thresholds are set such that the Gini impurity is
minimized in each step. Posterior probabilities are estimated by the class
frequencies of the training set in each end node.
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Combiners

In the classifier combination problem with confidence score outputs, inputs
to the combiner are the posterior scores belonging to different classes
obtained from the base classifiers. Let pik be the posterior score of class
i = 1, 2, . . . ,K obtained from classifier k = 1, 2, . . . , L for any data
instance. Let pk = (p1k , p

2
k , . . . , p

K
k )

′, then the input to the combiner is
f = (p1, p2, . . . , pL)

′. Outputs of the combiner are K different scores
representing the degree of support for each class. Let r i be the combined
score of class i and let r = (r1, r2, . . . , rK )′. In general the combiner is
defined as a function g such that r = g(f ). Label of a data instance x is
assigned as follows:

d(x) = arg max
i=1,...,K

r .
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Combiners

For equal priors we have following combining classifiers:

r imean(x) =
1

L

L∑

k=1

pik(x),

r iprod(x) =

L∏

k=1

pik(x),

r imin(x) = min
k

pik(x),

r imax(x) = max
k

pik(x),

r imed(x) = median
k

pik(x),

The n% trimmed (or truncated) mean is obtained by discarding the n%
lowest and highest probabilities. This combination rule tries to eliminate
harms of the outliers in the ensemble for the mean rule. Some classifiers
may give unusually high or low scores to a particular class and these scores
are not included in the averaging.
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Combiners

The arithmetic mean is most resilient to estimation errors and usually
outperforms other classifier combinations schemas. For combination rules
based on the sum, such as the arithmetic mean, and for the case of
classifiers working on different feature spaces, the arithmetic mean is less
sensitive to errors than the geometric mean. The combining rules based on
the product give better results when all classifiers produce small errors. If
at least one of the classifiers makes large errors then the arithmetic mean
rule gives better results. The product rule is sensitive to errors in the
posterior probability estimates, and deteriorates more rapidly than the
mean rule as the estimation errors increase. The motivation behind
minimum rule is to assign the test instance to the class for which there is
no base classifier that disagrees on the decision. Performance of the
minimum rule tends to increase as the base classifiers are all strong. For
the maximum rule, if one base methods insists on a particular class for a
given test instance, final decision assigns the test instance to that class;
even if all other base methods disagree. Median rule also provide
robustness to outliers, like the trimmed mean rule.
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Sequential combining

The method presented here relies on the sequential joining of additional
features on which the classifier is trained. Features are posterior
probabilities derived from the mean method of combining posterior
probabilities. In each step, however, we add the posterior probabilities
obtained on a slightly different data set, because the posterior probabilities
varies at each step. Some features are fixed (base features of observation),
and the new added features change at every step. Each base method gives
us the posterior probabilities, these probabilities are combined by six
non-trainable combining method giving us new posterior probabilities.
Finally this probabilities are combine once again by mean method of
combining classifiers. At each step, we replace the previously attached
posterior probabilities (resubstitution method of estimating error rate).
Schemes will be denoted CLDC, CQDC, CNB, C3NN and CTREE (prefix
C). The second problem concerns when to stop the procedure. A very
simple criterion was chosen, which makes the algorithm stop if at the next
step it does not decrease the classification error (the maximum number of
steps was fixed at 30).
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Data sets and experimental setup

Experiments were performed on 22 data sets. The number of classes varies
from 2 to 11, the number of features varies from 3 to 33, and the number
of instances varies from 150 to 2201. All the data sets originate from the
UCI Machine Learning Repository and KEEL data set repository, which are
the collections of databases used by the machine learning community for
the empirical analysis of machine learning algorithms.
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Data sets and experimental setup

Data set
Number of Number of Number of

Origin
features classes instances

Australian 14 2 690 KEEL

Balance 4 3 625 UCI

Bands 19 2 365 KEEL

BreastWisconsin 9 2 683 UCI

Car 6 4 1728 UCI

Contraceptive 9 3 1473 KEEL

Diabetes 8 2 768 UCI

Faults 27 7 1941 UCI

German 20 2 1000 UCI

Haberman 3 2 306 KEEL

Ionosphere 33 2 351 UCI

Iris 4 3 150 UCI

Liver 6 2 345 UCI

Mammographic 5 2 830 KEEL

Monk-2 6 2 432 KEEL

Parkinsons 22 2 195 UCI

Thyroid 5 3 215 UCI

Titanic 3 2 2201 KEEL

Vehicle 18 4 846 KEEL

Vowel 10 11 990 UCI

Wdbc 30 2 569 KEEL
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Data sets and experimental setup

A bootstrap method for estimating the classification accuracy was
employed. An essential feature of the bootstrap method is that
observations of the training sample play the role of a general population
and are used to determine the optimistic bias of the resubstitution
estimate. A bootstrap training sample is a random sample with
replacement from the training sample. A classification rule is designed
using a bootstrap training sample and is tested twice. 50 repetitions for
each data set were used. The 50 values of classification accuracy are
averaged to get the final estimate.
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Results

These results (absolute bootstrap error rates) are represented as a box plot.
A notches was drawn in each side of the boxes. If the notches of two plots
do not overlap this is strong evidence that the two medians differ.
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Results
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Results

In the following Table are shown relative error rates (in %). For two
methods A and B with errors εA and εB the relative error rate is

εB − εA

εA
.

The mean ratio of relative error rates is the average (over all data sets) of
the relative errors between the pair of compared method. A value of the
mean ratio of relative error rates less than 0 represents an improvement
due to the base method. We can see that we obtain, in the case of the
LDC, the highest average reduction in the relative error rates equals to
22.80. In the case of the QDC we get a much lower average reduction in
relative classification error rates equals to 14.07. Similarly for the NB we
have 20.57 reduction, for the 3NN method 17.42 and for decision trees
21.68. We see that in each case it is very high reduction of relative error
rate.
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Results

Data set LDC vs CLDC QDC vs CQDC NB vs CNB 3NN vs C3NN TREE vs CTREE

Australian −2.83 −10.67 −16.96 −2.17 −6.05

Balance −4.85 −4.28 −3.13 −32.93 −44.18

Bands −7.39 −6.87 −14.52 −2.85 −14.29

Breast W −25.09 −13.69 −4.14 −15.78 −27.94

Car −61.59 −28.12 −45.60 −46.19 −10.24

Contraceptive −2.66 −2.67 −8.37 −3.69 −2.98

Diabetes −1.32 −1.94 −4.21 −1.89 −6.09

Faults −32.64 −19.26 −23.18 −0.70 −15.48

German −1.69 −2.76 −5.23 −10.27 −9.45

Haberman −3.83 −3.61 −4.96 −8.12 −10.76

Ionosphere −54.18 −7.52 −32.35 −50.95 −37.09

Iris −12.50 −14.12 −25.91 −30.26 −31.24

Liver −6.13 −13.48 −22.02 −4.47 −9.93

Mammographic −6.41 −5.49 −4.84 −5.21 −2.96

Monk-2 −94.40 −88.93 −61.68 −90.34 −17.82

Parkinsons −23.22 −20.76 −19.11 −7.69 −23.63

Tae −8.04 −6.36 −6.34 −8.60 −14.25

Thyroid −46.12 −12.95 −17.79 −21.13 −52.55

Titanic −2.21 −0.12 0.00 22.10 2.82

Vehicle −12.82 −0.93 −52.67 −2.02 −31.00

Vowel −72.96 −35.56 −54.75 −11.32 −64.46

Wdbc −18.72 −9.50 −24.85 −4.49 −41.76

Mean ratio −22.80 −14.07 −20.57 −17.42 −21.68
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Results

The average number of steps after which the method was completed was
2.05 for the CLDC method, 1.91 for CQDC, 1.89 for CNB, 1.97 for C3NN
and 2.28 for CTREE. Hence the differences are rather slight. Note that for
a fixed threshold of 30, the algorithm always converges to the solution.
The largest number of steps which algorithms took to complete was 20 for
CQDC, C3NN and CTREE. In addition, the whole procedure works
quickly. The operating time of procedures increases proportionally to the
square of the number of analyzed models. Because this number is not too
large (up to 20, averaging ca. 2), the whole procedure is relatively fast.

CLDC CQDC CNB C3NN CTREE

Min number of steps 1 1 1 1 1

Mean number of steps 2.05 1.91 1.89 1.97 2.28

Max number of steps 19 20 15 20 20
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Results

Finally, to confirm that the sequential combining classifiers are superior to
base methods, we present a statistical comparison of their bootstrap error
rates on all 22 data sets.
To statistically compare two classifiers over multiple data sets, Demšar
(2006) recommends the Wilcoxon signed-ranks test. The Wilcoxon
signed-ranks test is a non-parametric alternative to the paired t-test,
which ranks the differences in performances of two classifiers for each data
set, ignoring the signs, and compares the ranks for the positive and the
negative differences. In our case we obtain a p-value equals to
0.0000004768 for LDC vs CLDC, QDC vs CQDC, 3NN vs C3NN and
TREE vs CTREE and 0.00006412 for NB vs CNB. We see that sequential
combining classifiers are significantly better than base methods at a
significance level of α = 0.05 (and even for α = 0.01).
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