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Introduction

Over recent years the popularity of time series has soared. As a
consequence there has been a dramatic increase in the amount of interest
in querying and mining such data. In particular, many new distance
measures between time series have been introduced. We propose a new
distance function based on derivatives and transforms of time series. In
contrast to well-known measures from the literature, our approach
combines three distances: DTW distance between time series, DTW
distance between derivatives of time series, and DTW distance between
transforms of time series. The new distance is used in classification with
the nearest neighbor rule. In order to provide a comprehensive comparison,
we conducted a set of experiments, testing effectiveness on 47 time series
data sets from a wide variety of application domains. Our experiments
show that this new method provides a significantly more accurate
classification on the examined data sets.




Introduction

The use of derivatives in time series classification is not a novelty. Their
use with DTW was proposed by Keogh and Pazzani (2001), who called
their method Derivative Dynamic Time Warping (DDTW). Our previous
work (Gérecki, tuczak (2013)) contains the results of research on DDTW
where the derivative is added, while at the same time parameterization
involves the participation of function and derivative. As was shown, such
an approach gave very good results. Therefore we decided to conduct
further research. We were looking for functions other than the derivative
which can be used in a similar manner. The choice was mathematical

transforms, which are very popular in the classification of time series.




Introduction

Ultimately, we decided on three real transforms: sine, cosine and Hilbert.
Of course, we do not think that it is enough to compare only the distance
between the transforms. It seems natural to add transforms as a further
element to improve the accuracy of classification. The parametric
approach was used, which allows us to choose the impact of each distance
on the final distance measure between the time series, and consequently
on the quality of the classification. The new distance functions so
constructed are used in the nearest neighbor classification method.




Dynamic time warping (DTW)

DTW is an algorithm for measuring similarity between two sequences
which may vary in time or speed. The sequences are warped in a nonlinear
fashion to match each other. The basic problem that DTW attempts to
solve is how to align two sequences in order to generate the most
representative distance measure of their overall difference. The DTW
algorithm uses a dynamic programming technique to find an optimal
match between two sequences of signals which allows for stretched and
compressed sections of the sequence. The first step is to compare each
point in one signal with every point in the second signal, generating a
matrix. The second step is to work through this matrix, starting at the
bottom-left corner, and ending at the top-right: for each cell, the
cumulative distance is calculated by picking the neighbouring cell in the
matrix to the left or beneath with the lowest cumulative distance, and
adding this value to the distance of the focal cell. When this process is
complete, the value in the top-right hand cell represents the distance
between the two signals according to the most efficient pathway through
the matrix.
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Dynamic time warping (DTW)

Figure : Top left: Two time series which are similar but out of phase produce a
large Euclidean distance. Bottom left: This can be corrected by DTWSs nonlinear
alignment. Right: To align the signals we construct a warping matrix, and search
for the optimal warping path.
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Transforms

They are three transforms very popular in technical sciences: the cosine
transform, sine transform, and Hilbert transform. All three are
non-isometric for DTW distance measure. For a series

f={f(i): i=1,2,...,n} we have a transform

f={f(k): k=1,2,...,n}.

Cosine transform:

F(k) = ; £(i) cos [% (/ - %) (k - 1)] .

Sine transform:

N n 1
f(k) = 2,-1: £(i)sin [% <i - 5) k] :
Hilbert transform:
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Distance measure

If dist is a distance measure for two time series f and g, a new distance
measure dist,pc is defined by

distoec(f. g) = adist(f, g) + bdist(f', g') + cdist(7, 2).

where f’, g’ are discrete (first) derivatives of f, g; f g are transforms;
and a, b, c € [0,1] are parameters. The discrete derivative of a time series
f with length n is defined by

Fi)=fli)—f(i—1), i=23,...,n

where f' is a time series with length n — 1.

Parameters a, b, ¢ are chosen in the tuning phase of a learning process.
For an arbitrary distance function dist, we will denote the new distance
measure by DTDY2"™ (derivative-transform distance), for example
DTDStyy (for the cosine transform).




Optimization

We don’t have to check all values of a, b, c € [0,1]. We can chose points
(a, b, ¢) on any continuous surface between points A = (1,0, 0),

B =(0,1,0), and C =(0,0,1). For example, it can be a surface of the
triangle with vertices in those points or one eighth of sphere. For
simplicity, we choose the triangle. This 3d triangle we map to the 2d
triangle with vertices in points A’ = (0,0), B’ = (1,0), and C’ = (%,3).
Both triangles we can define in parametrical way:

(a,b,c) = A+ aAB + BAC,
—  —
(d,6) = A +aAB + AL,

where (a, b, ¢) are points of the 3d triangle, (&', b') are points of the 2d
triangle, and «, 8 € [0, 1] are parameters.
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Optimization




Lower bound and triangular inequality

For many distance measures it can be found a lower bound of them. Then
the lower bound can be used in the nearest neighbor method to speed up
computations. We can also find a lower bound of our new distance
measure. If low is a lower bound of a distance dist, then

lowabe(, ) = alow(f, g) + blow(f',g") + clow(f, &)

is a lower bound of the distance d/iEabc. -

If the base distance dist is a metric, then the new distance dist is also a
metric. If dist is not a metric but obeys the triangular inequality, then the
distance dist obeys the triangular inequality as well:

aﬁabc(ﬂg) < aaabn::(fa h) + aEabc(ihg)-




We performed experiments on 47 data sets. The data sets originate from
the UCR Time Series Classification/Clustering Homepage (Keogh et al.
(2011)). To use with the new distance function, we chose one distance
measure: DTW and three transforms: sine, cosine, and Hilbert. Thus we
have three similarity measures denoted by DTD 1y, DTDStyy., and
DTDH;y. For each data set we calculated the classification error rate on
a test subset (to learn the model we used a training subset, leave-one-out,
INN method). We found all parameters using the training subset.

We use the cross-validation (leave-one-out) method to find the best pair
of parameters «, 8 in our classifier. If the minimal error rate is the same
for more than one pair of parameters «, 8 we choose the smallest pair
(minimizing « first, then ). Finite subsets of parameters o and 3 are
chosen, from 0 to 1 with fixed step 0.01.




c s H
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Comparing the new distances with the standard DTW we can see a
significant reduction in error rate for most data sets. This is especially
clearly seen for the mean of relative errors. The average relative error
reduction for all data sets is equal to 22.72% for DTDSryy, 22.21% for
DTDRqy. and 19.75% for TDH+y. The reduction for DDptw method is
19.03%, therefore the new distances are slightly better than DDptw




Results
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Figure : Comparison of test errors (DTW vs DTDJpw)-
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To find differences between the methods we used the Iman and Davenport
(1980) test, which is a nonparametric equivalent of ANOVA. Due to the
fact that the p-value is equal to 0, we can proceed with the post-hoc test
in order to detect significant pairwise differences among all the classifiers.
As a post-hoc test we used Bergmann and Hommel (1988) dynamic
procedure.

Procedure Ranks mean

DTDw 2.57 *
DTDStw 2.59 *
DTDH 2.74 *
DDprw 3.02 *
DTW 4.06 *

Finally, we have two homogeneous disjoint groups of classifiers. The best
classifiers are in the first group.




Of course, the interesting question is that of what derivative and transform
contributions in the final distance measure are optimal. Could we obtain
some arbitrary quantity that determines for all cases that such and such
participation will give us the best result of classification? The answer to
this question is negative. The optimal share may be zero, average, or that
it exclusively should be used. Following Figures present the contribution of
each component of the new distance, i.e. the value of f, its derivative f’
and its transform f, for the example data sets. We can see that the
minimal error can be obtained at different points of the triangle, i.e. for
different values of parameters a, b, ¢ («, 3).




Results
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