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Introduction

Recently, methods for data representing functions or curves have received
much attention. Such data are known in the literature as the functional
data (Ramsay & Silverman, 2005). Examples of functional data can be
found in several application domains, such as medicine, economics,
meteorology, and many others. In many applications, statistical methods
are needed for objects characterized by features observed at many time
points (double multivariate data). Such data are called the multivariate
functional data.
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Introduction

For multivariate functional data, various methods of classification are very
often used. We have L different types of curves, and the aim is to classify
a new function as one of the L types. Curve discrimination arises in many
contexts and is a significant problem. A clear example is signal
discrimination, which has been considered in several papers involving
high-resolution radar returns for target detection or the recognition of
speech signals.
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Introduction

We recommend not to use classification methods in the original functional
data space. For multivariate functional data, we construct the first
discriminant coordinates (Gérecki et al. (2018)). These coordinates are
uncorrelated and have unit variances. This new space of functional
discriminant coordinates is a very convenient space in which we can apply
various classification methods.
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Introduction

Our second recommendation is to take into account the shape of
functional data. Functions have shapes, and shapes are represented by
functions. The curvature of a plane curve at point P(xp, yo) defined by the
function y = f(x) in the Cartesian system is equal to

K=y /(1 + )2

Intuitively, the curvature is the amount by which a curve deviates from
being a straight line. We see that the definition of the curvature of the
plane curve is based on the first and second derivatives of the function f.
Hence, we recommend extending the functional data space to include the
first and second derivatives of functions representing this data.
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Representation of multivariate functional data

Assume that our data is divided into L groups of objects and that each
object is characterized by the values of the pair (Y, X), where Y is a
discrete random variable called a label with values from the set
{1,2,...,L} and X € LB(/) is p-dimensional Hilbert space of
square-integrable functions on the time interval / = [a, b].
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Representation of multivariate functional data

We take into account the case when the dth component X;: | — R of
the process X belongs to the class twice, continuously differentiable
functions on the time interval / and is represented by a finite number of
orthonormal basis functions {pp}:

By
Xa(t) = capon(t), (1)
b=0

where cgp are random variables such that E(cgp) =0, t € |,
d=12,...,p.
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Representation of multivariate functional data

Using formula (1), the process X can be written as:

X(t) =d(t)e, t €, (2)
where ¢ = (ci0, ..., C1Bys- -5 Cp0s - - - » CPBP)T
o(t) = diag(pg, (1), .., 95, (1), @5,(t) = (¢o(t),1(t), .., 0B,(1) ",
d=12,...,p.
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Representation of multivariate functional data

We can estimate the vector ¢ on the basis of n independent realisations
Xi1,Xi2,--.,Xin, from the jth class, i =1,2,..., L, of the random process
X (functional data). Details of the least squares method estimation of the
random coefficients ¢4 can be found in, e.g., in Gérecki et al. (2018).
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Dataset extension

Let X = (X1, X2,...,X,) ", where

By
Xd(t) = chbgpb(t% te Ia d= 1727' -y P
b=0

We compute the first derivative of the process Xy :

By
X)) = caph(t), tel, d=1,2,...,p.
b=0
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Dataset extension

Let x;; denote the value of the process X at time t;, where t; € ,
j=1,2,...,J. Then our data consist of J pairs (tj,X('.U), j=12...,J,
d=1,2,...,p. This discrete data can be smoothed using a function:

By
)A<(/1(t) = Zedb@b(t)7 te Ia d= 1727' -5 P-
b=0

Then, we compute the second derivative of the process Xy :

By
XJ(t)=> capf(t), tel, d=1,2,....p.
b=0

Let xé,’j be the value of the process X/ at time t;, where t; € /,
j=1,2,....J.
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Dataset extension

Now our data includes J pairs (tj,xélg.), j=12...,J,d=1,2,...,p.
This discrete data can be smoothed using a function:

Bq
Xg(t) = Zhdb@b(t), tel, d=1,2,...,p.
b=0

Finally, we add the information provided by derivatives to a pure
p-multivariate process X = (X1, Xz, ..., X,)", obtaining the extended
process:

Z = (X1, Xap oo, Xp, X0, X5, X0, XU, X5 X)) T
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Classifiers

From the formula (2), the estimates of independent realisations
Xi1,Xj2,...,Xin; of the process X in the ith group have the form:

Ri(t)=®(t)e;, tel, j=1,2,....m i=12,...,L

For this functional data, we construct functional discriminant coordinates.
We get s = min(By + - -+ + B, + p, L — 1) uncorrelated functional
coordinates with unitary variances. This new s-dimensional space of
functional discriminant coordinates is a very convenient classification space
using a variety of classifiers. We can replace the p-dimensional process X

with 3p-dimensional extended process Z and proceed analogously.
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Classifiers

In the s-dimensional vector space of functional discriminant coordinates,
we take into account the following classifiers:

@ a classifier of k-nearest neighbors (kNN),
Naive Bayes classifier (NB),

decision trees (DT),

the support vector machine (SVM),
random forest (RF),

and XGBoost.

o
o
o
o
o
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Classifiers

The percentage of correct classifications can be calculated for each of the
six classifiers. The classification can be performed on the functional data
related to the process X or the functional data associated with the
extended process Z. Since the data related to the extended Z process
additionally contains information about the shape of the function, it
should be expected that the classification performed on these data will
contain fewer errors.
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Our experiments used time series data from the UEA MTSC archive
(Bagnall et al. (2018)). Each dataset was divided into training and test
sets. For this reason, we adopted the classification error rate on the test
set as a quality measure.

Name Train size  Test size Dims Length  Classes
AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 6 100 4
Epilepsy 137 138 3 206 4
EthanolConcentration 261 263 3 1751 4
ERing 30 270 4 65 6
FingerMovements 316 100 28 50 2
HandMovementDirection 160 74 10 400 4
JapaneseVowels 270 370 12 29 9
Libras 180 180 2 45 15
NATOPS 180 180 24 51 6
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
StandWalkJump 12 15 4 2500 3
UWaveGestureLibrary 120 320 3 315 8
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Methods evaluation

All calculations were performed in the R environment using the fda and
caret packages. All classifier parameters were tuned automatically with
the default settings of caret library. All hyperparameters were found
using 10-fold cross-validation (10CV). During calculations, we used

B-spline basis functions. B-spline basis functions have the advantages of
speedy computation and great flexibility.
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Methods evaluation

Mean classification accuracies (over 15 datasets) for selected classifiers. D
states for derivative, and 0, 1, and 2 are raw data, first derivative and
second derivative, respectively. The best method is bolded, and the worst
is italicized.

Classifier DO D1 D2 D01 D02 D12 D012

kNN 0.60 053 050 0.61 0.60 0.51 0.62
NB 054 046 050 055 054 049 0.57
DT 0.48 0.47 040 049 048 0.45 0.50
SVM 050 044 046 050 051 048 0.53
RF 056 045 048 057 055 053 0.59

XGBoost 0.62 054 049 0.64 0.62 055 0.67
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@ Testing the proposed techniques using other bases (e.g., the Fourier
base) would be appropriate.

@ Moreover, testing the methodology on a larger amount of data and
larger data sets is reasonable.

@ Additionally, a dimension reduction method different from the one
proposed, for example, PCA, is worth investigating.
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